The Chronic Use of Magnesium Decreases VEGF Levels in the Uterine Tissue in Rats

  • Ferda Hoşgörler
  • Servet Kızıldağ
  • Mehmet Ateş
  • Asuman Argon
  • Başar Koç
  • Sevim Kandis
  • Güven Güvendi
  • Rabia Ilgin
  • Nazan UysalEmail author


Vascular endothelial growth factor (VEGF) is the most important regulator of angiogenesis which serves to provide sufficient blood supply, and can trigger both physiological and pathological angiogenesis. Recent studies have shown that VEGF increases in gynecological diseases (such as endometriosis, ovarian, and endometrial cancers) and is a prognostic factor in these pathologies. Therefore, VEGF should be maintained at appropriate levels. Magnesium is used in many gynecological practices (such as eclampsia, preeclampsia, dysmenorrhea, and climacteric symptoms) and the mechanisms of action are still under investigation. Redox status, which can be regulated by magnesium, was shown to affect VEGF expression. The aim of this study was to evaluate the effects of chronic magnesium use on VEGF and oxidative status in the uterus. Magnesium sulfate was administered to rats at doses of 30 mg/kg (intramuscular) for 2 weeks. VEGF, Superoxide dismutase (SOD), Glutathione peroxidase (GPx), and Malondialdehyde (MDA) levels were measured using ELISA; vascular and cellular alterations were determined by histology in the uterine tissue at the metoestrus phase. In the uterine tissue of Mg-treated subjects, magnesium levels increased while VEGF, SOD, GPx, and MDA levels decreased without histological changes. There was a negative correlation between uterine tissue magnesium levels and VEGF, SOD, GPx, and MDA levels. Consequently, the results of this study demonstrated that regular magnesium use decreased VEGF levels in uterus. Decreased VEGF levels were associated with decreased uterine oxidative stress. Chronic magnesium usage may protect the uterine tissue from certain diseases in which angiogenesis is critical.


Magnesium VEGF Uterus SOD GPx MDA Oxidative status 


Compliance with Ethical Standards

The experiments were carried out according to the guiding principles in the use of experimental animals and approved by the Animal Care and Use Committee of the Dokuz Eylül University, School of Medicine.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30. CrossRefGoogle Scholar
  2. 2.
    Acimovic M, Vidakovic S, Milic N, Jeremic K, Markovic M, Milosevic-Djeric A, Lazovic-Radonjic G (2016) Survivin and VEGF as novel biomarkers in diagnosis of endometriosis. J Med Biochem 35(1):63–68. CrossRefPubMedGoogle Scholar
  3. 3.
    Gadducci A, Guerrieri ME, Greco C (2013) Tissue biomarkers as prognostic variables of cervical cancer. Crit Rev Oncol Hematol 86(2):104–129. CrossRefPubMedGoogle Scholar
  4. 4.
    Sahoo SS, Tanwar PS (2018) VEGF-mTOR signaling links obesity and endometrial cancer. Oncoscience 5(5-6):150–151. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935):1306–1309CrossRefGoogle Scholar
  6. 6.
    Baranov VS, Ivaschenko TE, Liehr T, Yarmolinskaya MI (2015) Systems genetics view of endometriosis: a common complex disorder. Eur J Obstet Gynecol Reprod Biol 185:59–65. CrossRefPubMedGoogle Scholar
  7. 7.
    Dai H, Zhao S, Xu L, Chen A, Dai S (2010) Expression of Efp, VEGF and bFGF in normal, hyperplastic and malignant endometrial tissue. Oncol Rep 23(3):795–799PubMedGoogle Scholar
  8. 8.
    Monk BJ, Minion LE, Coleman RL (2016) Anti-angiogenic agents in ovarian cancer: past, present, and future. Ann Oncol 27(suppl_1):i33–i39. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Belfort-Mattos PN, Focchi GRA, Ribalta JCL, Megale De Lima T, Nogueira Carvalho CR, Kesselring Tso F, De Góis Speck NM (2016) Immunohistochemical expression of VEGF and podoplanin in uterine cervical squamous intraepithelial lesions. Dis Markers 2016:8293196–8293196. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shan B, Li W, Yang SY, Li ZR (2013) Estrogen up-regulates MMP2/9 expression in endometrial epithelial cell via VEGF-ERK1/2 pathway. Asian Pac J Trop Med 6(10):826–830. CrossRefPubMedGoogle Scholar
  11. 11.
    Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, McDonald DM, Blau HM (2004) Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 113(4):516–527. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Noronha JL, Matuschak GM (2002) Magnesium in critical illness: metabolism, assessment, and treatment. Intensive Care Med 28(6):667–679. CrossRefPubMedGoogle Scholar
  13. 13.
    Parazzini F, Di Martino M, Pellegrino P (2017) Magnesium in the gynecological practice: a literature review. Magnes Res 30(1):1–7. CrossRefPubMedGoogle Scholar
  14. 14.
    Chiarello DI, Marín R, Proverbio F, Coronado P, Toledo F, Salsoso R, Gutiérrez J, Sobrevia L (2018) Mechanisms of the effect of magnesium salts in preeclampsia. Placenta 69:134–139. CrossRefPubMedGoogle Scholar
  15. 15.
    Zheltova AA, Kharitonova MV, Iezhitsa IN, Spasov AA (2016) Magnesium deficiency and oxidative stress: an update. BioMedicine 6(4):20. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Earle KA, Zitouni K, Nourooz-Zadeh J (2019) Lipopolysaccharide-induced VEGF production and ambient oxidative stress in type 2 diabetes. J Clin Endocrinol Metab 104(1):1–6. CrossRefPubMedGoogle Scholar
  17. 17.
    Kim Y-W, Byzova TV (2014) Oxidative stress in angiogenesis and vascular disease. Blood 123(5):625–631. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Weintraub AY, Amash A, Eshkoli T, Piltcher Haber E, Bronfenmacher B, Sheiner E, Holcberg G, Huleihel M (2013) The effects of magnesium sulfate on placental vascular endothelial growth factor expression in preeclampsia. Hypertension in pregnancy 32(2):178–188. CrossRefPubMedGoogle Scholar
  19. 19.
    Durlach J, Durlach V, Bac P, Bara M, Guiet-Bara A (1994) Magnesium and therapeutics. Magnes Res 7(3-4):313–328PubMedGoogle Scholar
  20. 20.
    Nair AB, Jacob S (2016) A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 7(2):27–31. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kohler I, Meier R, Busato A, Neiger-Aeschbacher G, Schatzmann U (1999) Is carbon dioxide (CO2) a useful short acting anaesthetic for small laboratory animals? Lab Anim 33(2):155–161. CrossRefPubMedGoogle Scholar
  22. 22.
    Scudamore CL (2014) A practical guide to the histology of the mouse. Available via
  23. 23.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sahoo SS, Lombard JM, Ius Y, O’Sullivan R, Wood LG, Nahar P, Jaaback K, Tanwar PS (2018) Adipose-derived VEGF-mTOR signaling promotes endometrial hyperplasia and cancer: implications for obese women. Mol Cancer Res 16(2):309–321. CrossRefPubMedGoogle Scholar
  25. 25.
    Cheng WF, Chen CA, Lee CN, Wei LH, Hsieh FJ, Hsieh CY (2000) Vascular endothelial growth factor and prognosis of cervical carcinoma. Obstet Gynecol 96(5 Pt 1):721–726PubMedGoogle Scholar
  26. 26.
    Cross SN, Nelson RA, Potter JA, Norwitz ER, Abrahams VM (2018) Magnesium sulfate differentially modulates fetal membrane inflammation in a time-dependent manner. Am J Reprod Immunol 80(1):e12861. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee DK, Sengupta A, Nevo O (2018) The effect of magnesium sulfate on gene expression in maternal microvascular endothelial cells. Hypertens Pregnancy 37(1):30–36. CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang LW, Warrington JP (2016) Magnesium sulfate prevents placental ischemia-induced increases in brain water content and cerebrospinal fluid cytokines in pregnant rats. Front Neurosci 10:561. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ren H, Zhu C, Li Z, Yang W, Song E (2014) Emodin-loaded magnesium silicate hollow nanocarriers for anti-angiogenesis treatment through inhibiting VEGF. Int J Mol Sci 15(9):16936–16948. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Karuri AR, Kumar AM, Mukhopadhyay D (1998) Differential expression and selective localization of vascular permeability factor/vascular endothelial growth factor in the rat uterus during the estrous cycle. J Endocrinol 159(3):489–499CrossRefGoogle Scholar
  31. 31.
    Tremaine TD, Fouladi-Nashta AA (2018) Immunolocalization of angiogenic growth factors in the ovine uterus during the oestrus cycle and in response to. Steroids 53(3):667–679. CrossRefGoogle Scholar
  32. 32.
    Morais JB, Severo JS, Santos LR, de Sousa Melo SR, de Oliveira SR, de Oliveira AR, Cruz KJ, do Nascimento Marreiro D (2017) Role of magnesium in oxidative stress in individuals with obesity. Biol Trace Elem Res 176(1):20–26. CrossRefPubMedGoogle Scholar
  33. 33.
    Barbagallo M, Dominguez LJ (2010) Magnesium and aging. Curr Pharm Des 16(7):832–839CrossRefGoogle Scholar
  34. 34.
    Calviello G, Ricci P, Lauro L, Palozza P, Cittadini A (1994) Mg deficiency induces mineral content changes and oxidative stress in rats. Biochem Mol Biol Int 32(5):903–911PubMedGoogle Scholar
  35. 35.
    Kamath S, Varashree BS, John P, Mohapatra N, P. Shenoy R, Shetty R (2016) Correlation of serum magnesium and malondialdehyde levels in patients with myocardial infarction. Research Journal of Pharmaceutical, Biological and Chemical Sciences 7(5):791–795Google Scholar
  36. 36.
    Ustun ME, Gurbilek M, Ak A, Vatansev H, Duman A (2001) Effects of magnesium sulfate on tissue lactate and malondialdehyde levels in experimental head trauma. Intensive Care Med 27(1):264–268CrossRefGoogle Scholar
  37. 37.
    Chiarello DI, Marin R, Proverbio F, Benzo Z, Piñero S, Botana D, Abad C (2014) Effect of hypoxia on the calcium and magnesium content, lipid peroxidation level, and Ca2+-ATPase activity of syncytiotrophoblast plasma membranes from placental explants. Biomed Res Int 2014:9. CrossRefGoogle Scholar
  38. 38.
    Reinhart RA, Fananapazir L, Cannon RO 3rd, Hosseini JM, Elin RJ (1990) Effect of intravenous magnesium sulfate on blood magnesium parameters. Magnes Trace Elem 9(4):191–197PubMedGoogle Scholar
  39. 39.
    Alansari K, Ahmed W, Davidson BL, Alamri M, Zakaria I, Alrifaai M (2015) Nebulized magnesium for moderate and severe pediatric asthma: a randomized trial. Pediatr Pulmonol 50(12):1191–1199. CrossRefPubMedGoogle Scholar
  40. 40.
    Reynolds A, Slattery S, Byrne S, Neary E, Mullers S, Kent E, Malone FD, El-Khuffash A, McGarvey C, Hayes BC (2017) Timing of administration of antenatal magnesium sulfate and umbilical cord blood magnesium levels in preterm babies. J Matern Fetal Neonatal Med. 1-6CrossRefGoogle Scholar
  41. 41.
    Das M, Chaudhuri PR, Mondal BC, Mitra S, Bandyopadhyay D, Pramanik S (2015) Assessment of serum magnesium levels and its outcome in neonates of eclamptic mothers treated with low-dose magnesium sulfate regimen. Indian J Pharm 47(5):502–508. CrossRefGoogle Scholar
  42. 42.
    Uysal N, Kizildag S, Yuce Z, Guvendi G, Kandis S, Koc B, Karakilic A, Camsari UM, Ates M (2019) Timeline (bioavailability) of magnesium compounds in hours: which magnesium compound works best? Biol Trace Elem Res 187(1):128–136. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physiology, School of MedicineDokuz Eylul UniversityIzmirTurkey
  2. 2.College of Vocational School of Health Services, School of MedicineDokuz Eylul UniversityIzmirTurkey
  3. 3.Department of PathologyBozyaka Training and Research HospitalIzmirTurkey

Personalised recommendations