Advertisement

Role of Selenoproteins in Bacterial Pathogenesis

  • Sarah E. Sumner
  • Rachel L. Markley
  • Girish S. KirimanjeswaraEmail author
Article

Abstract

The trace element selenium is an essential micronutrient that plays an important role in maintaining homeostasis of several tissues including the immune system of mammals. The vast majority of the biological functions of selenium are mediated via selenoproteins, proteins which incorporate the selenium-containing amino acid selenocysteine. Several bacterial infections of humans and animals are associated with decreased levels of selenium in the blood and an adjunct therapy with selenium often leads to favorable outcomes. Many pathogenic bacteria are also capable of synthesizing selenocysteine suggesting that selenoproteins may have a role in bacterial physiology. Interestingly, the composition of host microbiota is also regulated by dietary selenium levels. Therefore, bacterial pathogens, microbiome, and host immune cells may be competing for a limited supply of selenium. Elucidating how selenium, in particular selenoproteins, may regulate pathogen virulence, microbiome diversity, and host immune response during a bacterial infection is critical for clinical management of infectious diseases.

Keywords

Selenium Selenoproteins Bacteria Pathogen Immune Response Microbiota 

Notes

Funding Information

This work was financially supported by AI123521 to GSK, T32 AI074551 to RLM,  and T32 GM108563 to SES.

References

  1. 1.
    Romero H, Zhang Y, Gladyshev VN, Salinas G (2005) Evolution of selenium utilization traits. Genome Biol 6:R66.  https://doi.org/10.1186/gb-2005-6-8-r66 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhang Y, Turanov AA, Hatfield DL, Gladyshev VN (2008) In silico identification of genes involved in selenium metabolism: evidence for a third selenium utilization trait. BMC Genomics 9:251.  https://doi.org/10.1186/1471-2164-9-251 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhang Y, Romero H, Salinas G, Gladyshev VN (2006) Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues. Genome Biol 7:R94.  https://doi.org/10.1186/gb-2006-7-10-r94 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hatfield DL, Tsuji PA, Carlson BA, Gladyshev VN (2014) Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem Sci 39:112–120.  https://doi.org/10.1016/j.tibs.2013.12.007 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100.  https://doi.org/10.1146/annurev.bi.65.070196.000503 CrossRefPubMedGoogle Scholar
  6. 6.
    Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130.  https://doi.org/10.1146/annurev.micro.60.080805.142053 CrossRefPubMedGoogle Scholar
  7. 7.
    Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22:3565–3576.  https://doi.org/10.1128/mcb.22.11.3565-3576.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gladyshev VN (2016) Eukaryotic selenoproteomes. In: Selenium. Springer International Publishing, Cham, pp 127–139CrossRefGoogle Scholar
  9. 9.
    Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241.  https://doi.org/10.1016/S0140-6736(00)02490-9 CrossRefGoogle Scholar
  10. 10.
    Huang Z, Rose AH, Hoffmann PR (2012) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16:705–743.  https://doi.org/10.1089/ars.2011.4145 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777.  https://doi.org/10.1152/physrev.00039.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chariot P, Bignani O (2003) Skeletal muscle disorders associated with selenium deficiency in humans. Muscle Nerve 27:662–668.  https://doi.org/10.1002/mus.10304 CrossRefGoogle Scholar
  13. 13.
    Ishihara H, Kanda F, Matsushita T et al (1999) White muscle disease in humans: myopathy caused by selenium deficiency in anorexia nervosa under long term total parenteral nutrition. J Neurol Neurosurg Psychiatry 67:829–830.  https://doi.org/10.1136/jnnp.67.6.829 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sheehan HB, Benetucci J, Muzzio E et al (2012) High rates of serum selenium deficiency among HIV- and HCV-infected and uninfected drug users in Buenos Aires, Argentina. Public Health Nutr 15:538–545.  https://doi.org/10.1017/S1368980011001364 CrossRefPubMedGoogle Scholar
  15. 15.
    Di Bella S, Grilli E, Cataldo MA, Petrosillo N (2010) Selenium deficiency and HIV infection. Infect Dis Rep 2:18.  https://doi.org/10.4081/idr.2010.e18 CrossRefGoogle Scholar
  16. 16.
    Choi R, Kim H-T, Lim Y et al (2015) Serum concentrations of trace elements in patients with tuberculosis and its association with treatment outcome. Nutrients 7:5969–5981.  https://doi.org/10.3390/nu7075263 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rudolph M, Kroll F, Beery M et al (2013) A pilot study assessing the impact of a fortified supplementary food on the health and well-being of crèche children and adult TB patients in South Africa. PLoS One 8:e55544.  https://doi.org/10.1371/journal.pone.0055544 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Baum MK, Campa A, Lai S et al (2013) Effect of micronutrient supplementation on disease progression in asymptomatic, antiretroviral-naive, HIV-infected adults in Botswana: a randomized clinical trial. JAMA 310:2154–2163.  https://doi.org/10.1001/jama.2013.280923 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Groenbaek K, Friis H, Hansen M et al (2006) The effect of antioxidant supplementation on hepatitis C viral load, transaminases and oxidative status: a randomized trial among chronic hepatitis C virus-infected patients. Eur J Gastroenterol Hepatol 18:985–989.  https://doi.org/10.1097/01.meg.0000231746.76136.4a CrossRefPubMedGoogle Scholar
  20. 20.
    Khan MS, Dilawar S, Ali I, Rauf N (2012) The possible role of selenium concentration in hepatitis B and C patients. Saudi J Gastroenterol 18:106–110.  https://doi.org/10.4103/1319-3767.93811 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Steinbrenner H, Al-Quraishy S, Dkhil MA et al (2015) Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv Nutr 6:73–82.  https://doi.org/10.3945/an.114.007575 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Villamor E, Mugusi F, Urassa W et al (2008) A trial of the effect of micronutrient supplementation on treatment outcome, T cell counts, morbidity, and mortality in adults with pulmonary tuberculosis. J Infect Dis 197:1499–1505.  https://doi.org/10.1086/587846 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Seyedrezazadeh E, Ostadrahimi A, Mahboob S et al (2008) Effect of vitamin E and selenium supplementation on oxidative stress status in pulmonary tuberculosis patients. Respirology 13:294–298.  https://doi.org/10.1111/j.1440-1843.2007.01200.x CrossRefPubMedGoogle Scholar
  24. 24.
    Kryukov GV, Gladyshev VN (2004) The prokaryotic selenoproteome. EMBO Rep 5:538–543.  https://doi.org/10.1038/sj.embor.7400126 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Santesmasses D, Mariotti M, Guigó R (2017) Computational identification of the selenocysteine tRNA (tRNASec) in genomes. PLoS Comput Biol 13:e1005383.  https://doi.org/10.1371/journal.pcbi.1005383 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Axley MJ, Stadtman TC (1989) Selenium metabolism and selenium-dependent enzymes in microorganisms. Annu Rev Nutr 9:127–137.  https://doi.org/10.1146/annurev.nu.09.070189.001015 CrossRefPubMedGoogle Scholar
  27. 27.
    Böck A, Forchhammer K, Heider J et al (1991) Selenocysteine: the 21st amino acid. Mol Microbiol 5:515–520.  https://doi.org/10.1111/j.1365-2958.1991.tb00722.x CrossRefPubMedGoogle Scholar
  28. 28.
    Böck A (2001) Selenium metabolism in bacteria. In: Selenium. Springer US, Boston, pp 7–22CrossRefGoogle Scholar
  29. 29.
    Böck A (2000) Biosynthesis of selenoproteins—an overview. Biofactors 11:77–78CrossRefPubMedGoogle Scholar
  30. 30.
    Thanbichler M, Böck A (2002) Selenoprotein biosynthesis: purification and assay of components involved in selenocysteine biosynthesis and insertion in Escherichia coli. In: Methods in enzymology. pp 3–16Google Scholar
  31. 31.
    Lin J, Peng T, Jiang L et al (2015) Comparative genomics reveals new candidate genes involved in selenium metabolism in prokaryotes. Genome Biol Evol 7:664–676.  https://doi.org/10.1093/gbe/evv022 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bulteau A-L, Chavatte L (2015) Update on selenoprotein biosynthesis. Antioxid Redox Signal 23:775–794.  https://doi.org/10.1089/ars.2015.6391 CrossRefGoogle Scholar
  33. 33.
    Caton-Williams J, Huang Z (2008) Biochemistry of selenium-derivatized naturally occurring and unnatural nucleic acids. Chem Biodivers 5:396–407.  https://doi.org/10.1002/cbdv.200890040 CrossRefPubMedGoogle Scholar
  34. 34.
    Ching WM, Alzner-DeWeerd B, Stadtman TC (1985) A selenium-containing nucleoside at the first position of the anticodon in seleno-tRNAGlu from Clostridium sticklandii. Proc Natl Acad Sci 82:347–350.  https://doi.org/10.1073/pnas.82.2.347 CrossRefPubMedGoogle Scholar
  35. 35.
    Ching W-M (1986) Characterization of selenium-containing tRNAGlu from Clostridium sticklandii. Arch Biochem Biophys 244:137–146.  https://doi.org/10.1016/0003-9861(86)90102-5 CrossRefPubMedGoogle Scholar
  36. 36.
    Gladyshev VN, Khangulov SV, Stadtman TC (1996) Properties of the selenium- and molybdenum-containing nicotinic acid hydroxylase from Clostridium barkeri. Biochemistry 35:212–223.  https://doi.org/10.1021/bi951793i CrossRefPubMedGoogle Scholar
  37. 37.
    Self WT (2002) Regulation of purine hydroxylase and xanthine dehydrogenase from Clostridium purinolyticum in response to purines, selenium, and molybdenum. J Bacteriol 184:2039–2044.  https://doi.org/10.1128/JB.184.7.2039-2044.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Peng T, Lin J, Xu Y-Z, Zhang Y (2016) Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. ISME J 10:2048–2059.  https://doi.org/10.1038/ismej.2015.246 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ferry JG (1990) Formate dehydrogenase. FEMS Microbiol Lett 87:377–382.  https://doi.org/10.1111/j.1574-6968.1990.tb04940.x CrossRefGoogle Scholar
  40. 40.
    Bettenbrock K, Bai H, Ederer M, et al (2014) Towards a systems level understanding of the oxygen response of Escherichia coli. In: Advances in microbial physiology. pp 65–114Google Scholar
  41. 41.
    Axley MJ, Bock A, Stadtman TC (1991) Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. Proc Natl Acad Sci 88:8450–8454.  https://doi.org/10.1073/pnas.88.19.8450 CrossRefPubMedGoogle Scholar
  42. 42.
    Shaw FL, Mulholland F, Le Gall G et al (2012) Selenium-dependent biogenesis of formate dehydrogenase in Campylobacter jejuni is controlled by the fdhTU accessory genes. J Bacteriol 194:3814–3823.  https://doi.org/10.1128/JB.06586-11 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tareen AM, Dasti JI, Zautner AE et al (2010) Campylobacter jejuni proteins Cj0952c and Cj0951c affect chemotactic behaviour towards formic acid and are important for invasion of host cells. Microbiology 156:3123–3135.  https://doi.org/10.1099/mic.0.039438-0 CrossRefPubMedGoogle Scholar
  44. 44.
    Andreesen JR, Wagner M, Sonntag D et al (1999) Various functions of selenols and thiols in anaerobic Gram-positive, amino acids-utilizing bacteria. BioFactors 10:263–270.  https://doi.org/10.1002/biof.5520100226 CrossRefPubMedGoogle Scholar
  45. 45.
    Garcia GE, Stadtman TC (1992) Clostridium sticklandii glycine reductase selenoprotein A gene: cloning, sequencing, and expression in Escherichia coli. J Bacteriol 174:7080–7089.  https://doi.org/10.1128/jb.174.22.7080-7089.1992 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Schrader T, Rienhofer A, Andreesen JR (1999) Selenium-containing xanthine dehydrogenase from Eubacterium barkeri. Eur J Biochem 264:862–871.  https://doi.org/10.1046/j.1432-1327.1999.00678.x CrossRefPubMedGoogle Scholar
  47. 47.
    Self WT, Stadtman TC (2000) Selenium-dependent metabolism of purines: a selenium-dependent purine hydroxylase and xanthine dehydrogenase were purified from Clostridium purinolyticum and characterized. Proc Natl Acad Sci 97:7208–7213.  https://doi.org/10.1073/pnas.97.13.7208 CrossRefPubMedGoogle Scholar
  48. 48.
    Srivastava M, Mallard C, Barke T et al (2011) A selenium-dependent xanthine dehydrogenase triggers biofilm proliferation in Enterococcus faecalis through oxidant production. J Bacteriol 193:1643–1652.  https://doi.org/10.1128/JB.01063-10 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Rucker RB, Fascetti AJ, Keen CL (2008) Trace minerals. In: Clinical biochemistry of domestic animals. Elsevier, Amsterdam, pp 663–693CrossRefGoogle Scholar
  50. 50.
    van Crevel R, Ottenhoff THM, van der Meer JWM (2002) Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev 15:294–309.  https://doi.org/10.1128/CMR.15.2.294-309.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Roman M, Jitaru P, Barbante C (2014) Selenium biochemistry and its role for human health. Metallomics 6:25–54.  https://doi.org/10.1039/C3MT00185G CrossRefGoogle Scholar
  52. 52.
    Arthur JR, McKenzie RC, Beckett GJ (2003) Selenium in the immune system. J Nutr 133:1457S–1459S.  https://doi.org/10.1093/jn/133.5.1457S CrossRefGoogle Scholar
  53. 53.
    Gao X, Zhang Z, Li Y et al (2016) Selenium deficiency facilitates inflammation following S. aureus infection by regulating TLR2-related pathways in the mouse mammary gland. Biol Trace Elem Res 172:449–457.  https://doi.org/10.1007/s12011-015-0614-y CrossRefGoogle Scholar
  54. 54.
    Smith AD, Cheung L, Botero S (2011) Long-term selenium deficiency increases the pathogenicity of a Citrobacter rodentium infection in mice. Biol Trace Elem Res 144:965–982.  https://doi.org/10.1007/s12011-011-9071-4 CrossRefPubMedGoogle Scholar
  55. 55.
    Smith AD, Botero S, Shea-Donohue T, Urban JF (2011) The pathogenicity of an enteric Citrobacter rodentium infection is enhanced by deficiencies in the antioxidants selenium and vitamin E. Infect Immun 79:1471–1478.  https://doi.org/10.1128/IAI.01017-10 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wang C, Wang H, Luo J et al (2009) Selenium deficiency impairs host innate immune response and induces susceptibility to Listeria monocytogenes infection. BMC Immunol 10:55.  https://doi.org/10.1186/1471-2172-10-55 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Berg BM, Godbout JP, Chen J et al (2005) alpha-Tocopherol and selenium facilitate recovery from lipopolysaccharide-induced sickness in aged mice. J Nutr 135:1157–1163.  https://doi.org/10.1093/jn/135.5.1157 CrossRefPubMedGoogle Scholar
  58. 58.
    Altimira J, Prats N, López S et al (2000) Effect of selenium deficiency on the development of central nervous system lesions in murine listeriosis. J Comp Pathol 123:104–109.  https://doi.org/10.1053/jcpa.2000.0399 CrossRefPubMedGoogle Scholar
  59. 59.
    Liu Y, Qiu C, Li W et al (2016) Selenium plays a protective role in Staphylococcus aureus-induced endometritis in the uterine tissue of rats. Biol Trace Elem Res 173:345–353.  https://doi.org/10.1007/s12011e-016-0659-6 CrossRefGoogle Scholar
  60. 60.
    Kim SH, Ha U-S, Sohn DW et al (2012) Preventive effect of ginsenoid on chronic bacterial prostatitis. J Infect Chemother 18:709–714.  https://doi.org/10.1007/s10156-012-0406-7 CrossRefPubMedGoogle Scholar
  61. 61.
    Boyne R, Arthur JR, Wilson AB (1986) An in vivo and in vitro study of selenium deficiency and infection in rats. J Comp Pathol 96:379–386CrossRefPubMedGoogle Scholar
  62. 62.
    Sjunnesson H, Sturegård E, Willén R, Wadström T (2001) High intake of selenium, beta-carotene, and vitamins A, C, and E reduces growth of Helicobacter pylori in the guinea pig. Comp Med 51:418–423PubMedGoogle Scholar
  63. 63.
    Centers for Disease Control and Prevention (2012) Reported Tuberculosis in the United States, 2017. Atlanta, GA: U.S. Department of Health and Human Services, CDC.Available at http://www.cdc.gov/tb/statistics/reports/2017/. Accessed Oct 2018
  64. 64.
    Lazzari TK, Forte GC, Silva DR (2018) Nutrition status among HIV-positive and HIV-negative inpatients with pulmonary tuberculosis. Nutr Clin Pract 33:858–864.  https://doi.org/10.1002/ncp.10006 CrossRefPubMedGoogle Scholar
  65. 65.
    Muzembo BA, Mbendi NC, Ngatu NR et al (2018) Serum selenium levels in tuberculosis patients: a systematic review and meta-analysis. J Trace Elem Med Biol 50:257–262.  https://doi.org/10.1016/j.jtemb.2018.07.008 CrossRefPubMedGoogle Scholar
  66. 66.
    Kassu A, Yabutani T, Mahmud ZH et al (2006) Alterations in serum levels of trace elements in tuberculosis and HIV infections. Eur J Clin Nutr 60:580–586.  https://doi.org/10.1038/sj.ejcn.1602352 CrossRefPubMedGoogle Scholar
  67. 67.
    de Moraes ML, de Paula RDM, Delogo KN et al (2014) Association between serum selenium level and conversion of bacteriological tests during antituberculosis treatment. J Bras Pneumol 40:269–278.  https://doi.org/10.1590/S1806-37132014000300010 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Campa A, Baum M, Bussmann H et al (2017) The effect of micronutrient supplementation on active TB incidence early in HIV infection in Botswana. Nutr Diet Suppl 9:37–45.  https://doi.org/10.2147/NDS.S123545 CrossRefGoogle Scholar
  69. 69.
    Kawai K, Meydani SN, Urassa W et al (2014) Micronutrient supplementation and T cell-mediated immune responses in patients with tuberculosis in Tanzania. Epidemiol Infect 142:1505–1509.  https://doi.org/10.1017/S0950268813002495 CrossRefPubMedGoogle Scholar
  70. 70.
    Grobler L, Nagpal S, Sudarsanam TD, Sinclair D (2016) Nutritional supplements for people being treated for active tuberculosis. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD006086.pub4
  71. 71.
    Angstwurm MWA, Schottdorf J, Schopohl J, Gaertner R (1999) Selenium replacement in patients with severe systemic inflammatory response syndrome improves clinical outcome. Crit Care Med 27:1807–1813.  https://doi.org/10.1097/00003246-199909000-00017 CrossRefGoogle Scholar
  72. 72.
    Berger MM, Eggimann P, Heyland DK et al (2006) Reduction of nosocomial pneumonia after major burns by trace element supplementation: aggregation of two randomised trials. Crit Care 10:R153.  https://doi.org/10.1186/cc5084 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Angstwurm MWA, Engelmann L, Zimmermann T et al (2007) Selenium in intensive care (SIC): results of a prospective randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock*. Crit Care Med 35:118–126.  https://doi.org/10.1097/01.CCM.0000251124.83436.0E CrossRefGoogle Scholar
  74. 74.
    Forceville X, Laviolle B, Annane D et al (2007) Effects of high doses of selenium, as sodium selenite, in septic shock: a placebo-controlled, randomized, double-blind, phase II study. Crit Care 11:R73.  https://doi.org/10.1186/cc5960 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Mishra V, Baines M, Elizabeth Perry S et al (2007) Effect of selenium supplementation on biochemical markers and outcome in critically ill patients. Clin Nutr 26:41–50.  https://doi.org/10.1016/j.clnu.2006.10.003 CrossRefGoogle Scholar
  76. 76.
    Andrews PJD, Avenell A, Noble DW et al (2011) Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ 342:d1542–d1542.  https://doi.org/10.1136/bmj.d1542 CrossRefPubMedGoogle Scholar
  77. 77.
    Manzanares W, Biestro A, Torre MH et al (2011) High-dose selenium reduces ventilator-associated pneumonia and illness severity in critically ill patients with systemic inflammation. Intensive Care Med 37:1120–1127.  https://doi.org/10.1007/s00134-011-2212-6 CrossRefPubMedGoogle Scholar
  78. 78.
    Valenta J, Brodska H, Drabek T et al (2011) High-dose selenium substitution in sepsis: a prospective randomized clinical trial. Intensive Care Med 37:808–815.  https://doi.org/10.1007/s00134-011-2153-0 CrossRefGoogle Scholar
  79. 79.
    Janka V, Ladislav K, Jozef F, Ladislav V (2013) Restoration of antioxidant enzymes in the therapeutic use of selenium in septic patients. Wien Klin Wochenschr 125:316–325.  https://doi.org/10.1007/s00508-013-0371-x CrossRefPubMedGoogle Scholar
  80. 80.
    Kamboj AK, Cotter TG, Oxentenko AS (2017) Helicobacter pylori: the past, present, and future in management. Mayo Clin Proc 92:599–604.  https://doi.org/10.1016/j.mayocp.2016.11.017 CrossRefPubMedGoogle Scholar
  81. 81.
    CDC (1998) Helicobacter pylori outer membrane protein (Omp22); used in a recombinant vaccine for therapy or prevention of H. pylori infection Mogam Biotechnol. Res. Inst. Kyonggi World 9728 264; 7 August 1997. Vaccine 16:436.  https://doi.org/10.1016/S0264-410X(97)80923-1 CrossRefGoogle Scholar
  82. 82.
    Lahner E, Persechino S, Annibale B (2012) Micronutrients (other than iron) and Helicobacter pylori infection: a systematic review. Helicobacter 17:1–15.  https://doi.org/10.1111/j.1523-5378.2011.00892.x CrossRefPubMedGoogle Scholar
  83. 83.
    Ustündağ Y, Boyacioğlu S, Haberal A et al (2001) Plasma and gastric tissue selenium levels in patients with Helicobacter pylori infection. J Clin Gastroenterol 32:405–408.  https://doi.org/10.1097/00004836-200105000-00009 CrossRefPubMedGoogle Scholar
  84. 84.
    Hu A, Li L, Hu C et al (2018) Serum concentrations of 15 elements among Helicobacter pylori-infected residents from Lujiang County with high gastric cancer risk in Eastern China. Biol Trace Elem Res 186:21–30.  https://doi.org/10.1007/s12011-018-1283-4 CrossRefPubMedGoogle Scholar
  85. 85.
    Camargo MC, Burk RF, Bravo LE et al (2008) Plasma selenium measurements in subjects from areas with contrasting gastric cancer risks in Colombia. Arch Med Res 39:443–451.  https://doi.org/10.1016/j.arcmed.2007.12.004 CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Deshmukh P, Unni S, Krishnappa G, Padmanabhan B (2017) The Keap1–Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev 9:41–56.  https://doi.org/10.1007/s12551-016-0244-4 CrossRefGoogle Scholar
  87. 87.
    Ji JH, Shin DG, Kwon Y et al (2012) Clinical correlation between gastric cancer type and serum selenium and zinc levels. J Gastric Cancer 12:217.  https://doi.org/10.5230/jgc.2012.12.4.217 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Kneller RW, De Guo W, Hsing AW et al (1992) Risk factors for stomach cancer in sixty-five Chinese counties. Cancer Epidemiol Biomark Prev 1:113–118Google Scholar
  89. 89.
    Cai X, Wang C, Yu W et al (2016) Selenium exposure and cancer risk: an updated meta-analysis and meta-regression. Sci Rep 6:19213.  https://doi.org/10.1038/srep19213 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Gong H-Y, He J-G, Li B-S (2016) Meta-analysis of the association between selenium and gastric cancer risk. Oncotarget 7:15600–15605.  https://doi.org/10.18632/oncotarget.7205 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Singer M, Deutschman CS, Seymour CW et al (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:801–810.  https://doi.org/10.1001/jama.2016.0287 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Armstrong BA, Betzold RD, May AK (2017) Sepsis and septic shock strategies. Surg Clin North Am 97:1339–1379.  https://doi.org/10.1016/j.suc.2017.07.003 CrossRefPubMedGoogle Scholar
  93. 93.
    Sakr Y, Reinhart K, Bloos F et al (2007) Time course and relationship between plasma selenium concentrations, systemic inflammatory response, sepsis, and multiorgan failure. Br J Anaesth 98:775–784.  https://doi.org/10.1093/bja/aem091 CrossRefPubMedGoogle Scholar
  94. 94.
    Mertens K, Lowes DA, Webster NR et al (2015) Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation. Br J Anaesth 114:990–999.  https://doi.org/10.1093/bja/aev073 CrossRefGoogle Scholar
  95. 95.
    Zolali E, Hamishehkar H, Maleki-Dizaji N et al (2014) Selenium effect on oxidative stress factors in septic rats. Adv Pharm Bull 4:289–293.  https://doi.org/10.5681/apb.2014.042 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Reber LL, Gillis CM, Starkl P et al (2017) Neutrophil myeloperoxidase diminishes the toxic effects and mortality induced by lipopolysaccharide. J Exp Med 214:1249–1258.  https://doi.org/10.1084/jem.20161238 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Balasubramanian D, Harper L, Shopsin B, Torres VJ (2017) Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis 75.  https://doi.org/10.1093/femspd/ftx005
  98. 98.
    Bi C-L, Wang H, Wang Y-J et al (2016) Selenium inhibits Staphylococcus aureus-induced inflammation by suppressing the activation of the NF-κB and MAPK signalling pathways in RAW264.7 macrophages. Eur J Pharmacol 780:159–165.  https://doi.org/10.1016/j.ejphar.2016.03.044 CrossRefGoogle Scholar
  99. 99.
    Cole J, Aberdein J, Jubrail J, Dockrell DH (2014) The role of macrophages in the innate immune response to Streptococcus pneumoniae and Staphylococcus aureus. In: Advances in microbial physiology, pp 125–202Google Scholar
  100. 100.
    Aribi M, Meziane W, Habi S et al (2015) Macrophage bactericidal activities against Staphylococcus aureus are enhanced in vivo by selenium supplementation in a dose-dependent manner. PLoS One 10:e0135515.  https://doi.org/10.1371/journal.pone.0135515 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Gao X, Zhang Z, Li Y et al (2016) Selenium deficiency deteriorate the inflammation of S. aureus infection via regulating NF-κB and PPAR-γ in mammary gland of mice. Biol Trace Elem Res 172:140–147.  https://doi.org/10.1007/s12011-015-0563-5 CrossRefPubMedGoogle Scholar
  102. 102.
    Wei Z, Yao M, Li Y et al (2014) Dietary Selenium deficiency exacerbates lipopolysaccharide-induced inflammatory response in mouse mastitis models. Inflammation 37:1925–1931.  https://doi.org/10.1007/s10753-014-9925-y CrossRefPubMedGoogle Scholar
  103. 103.
    Kaper JB, Nataro JP, Mobley HLT (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140.  https://doi.org/10.1038/nrmicro818 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Yang J, Huang K, Qin S et al (2009) Antibacterial action of selenium-enriched probiotics against pathogenic Escherichia coli. Dig Dis Sci 54:246–254.  https://doi.org/10.1007/s10620-008-0361-4 CrossRefPubMedGoogle Scholar
  105. 105.
    Kim HW, Ha U-S, Woo JC et al (2012) Preventive effect of selenium on chronic bacterial prostatitis. J Infect Chemother 18:30–34.  https://doi.org/10.1007/s10156-011-0276-4 CrossRefPubMedGoogle Scholar
  106. 106.
    Li J, Uzal F, McClane B (2016) Clostridium perfringens sialidases: potential contributors to intestinal pathogenesis and therapeutic targets. Toxins (Basel) 8:341.  https://doi.org/10.3390/toxins8110341 CrossRefGoogle Scholar
  107. 107.
    Kiu R, Hall LJ (2018) An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect 7:1–15.  https://doi.org/10.1038/s41426-018-0144-8 CrossRefGoogle Scholar
  108. 108.
    Xu S, Lee S-H, Lillehoj HS et al (2015) Effects of dietary selenium on host response to necrotic enteritis in young broilers. Res Vet Sci 98:66–73.  https://doi.org/10.1016/j.rvsc.2014.12.004 CrossRefPubMedGoogle Scholar
  109. 109.
    Lee SH, Lillehoj HS, Jang SI et al (2014) Effects of in ovo injection with selenium on immune and antioxidant responses during experimental necrotic enteritis in broiler chickens1. Poult Sci 93:1113–1121.  https://doi.org/10.3382/ps.2013-03770 CrossRefPubMedGoogle Scholar
  110. 110.
    CDC (2014) General information|cholera|CDC. CDC, AtlantaGoogle Scholar
  111. 111.
    Bhattaram V, Upadhyay A, Yin H-B et al (2017) Effect of dietary minerals on virulence attributes of Vibrio cholerae. Front Microbiol 8.  https://doi.org/10.3389/fmicb.2017.00911
  112. 112.
    Hall JA, Vorachek WR, Stewart WC et al (2013) Selenium supplementation restores innate and humoral immune responses in footrot-affected sheep. PLoS One 8:e82572.  https://doi.org/10.1371/journal.pone.0082572 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Partogi D, Dalimunthe DA, Hazlianda CP (2018) A study of selenium in leprosy. Open Access Maced J Med Sci 6:485–487.  https://doi.org/10.3889/oamjms.2018.136 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Foster R, Sanchez A, Foulkes J, Cameron LJ (1991) Profile of blood elements in leprosy patients. Indian J Lepr 63:12–33PubMedGoogle Scholar
  115. 115.
    Kong Z, Wang F, Ji S et al (2013) Selenium supplementation for sepsis: a meta-analysis of randomized controlled trials. Am J Emerg Med 31:1170–1175.  https://doi.org/10.1016/j.ajem.2013.04.020 CrossRefPubMedGoogle Scholar
  116. 116.
    Hartstra AV, Bouter KEC, Bäckhed F, Nieuwdorp M (2015) Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 38:159–165.  https://doi.org/10.2337/dc14-0769 CrossRefPubMedGoogle Scholar
  117. 117.
    Wolf KJ, Lorenz RG (2012) Gut microbiota and obesity. Curr Obes Rep 1:1–8.  https://doi.org/10.1007/s13679-011-0001-8 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Manichanh C (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55:205–211.  https://doi.org/10.1136/gut.2005.073817 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    McIlroy J, Ianiro G, Mukhopadhya I et al (2018) Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment Pharmacol Ther 47:26–42.  https://doi.org/10.1111/apt.14384 CrossRefPubMedGoogle Scholar
  120. 120.
    Borren NZ, Conway G, Garber JJ et al (2018) Differences in clinical course, genetics, and the microbiome between familial and sporadic inflammatory bowel diseases. J Crohn's Colitis 12:525–531.  https://doi.org/10.1093/ecco-jcc/jjx154 CrossRefGoogle Scholar
  121. 121.
    Assa A, Butcher J, Li J et al (2016) Mucosa-associated ileal microbiota in new-onset pediatric Crohn’s disease. Inflamm Bowel Dis 22:1533–1539.  https://doi.org/10.1097/MIB.0000000000000776 CrossRefPubMedGoogle Scholar
  122. 122.
    Zackular JP, Baxter NT, Iverson KD et al (2013) The gut microbiome modulates colon tumorigenesis. MBio 4.  https://doi.org/10.1128/mBio.00692-13
  123. 123.
    Daniel SG, Ball CL, Besselsen DG et al (2017) Functional changes in the gut microbiome contribute to transforming growth factor β-deficient colon cancer. MSystems:2.  https://doi.org/10.1128/mSystems.00065-17
  124. 124.
    Scieszka M, Danch A, Machalski M, Drózdz M (1997) Plasma selenium concentration in patients with stomach and colon cancer in the Upper Silesia. Neoplasma 44:395–397.  https://doi.org/10.1515/angl.2010.034 CrossRefPubMedGoogle Scholar
  125. 125.
    Kasaikina MV, Kravtsova MA, Lee BC et al (2011) Dietary selenium affects host selenoproteome expression by influencing the gut microbiota. FASEB J 25:2492–2499.  https://doi.org/10.1096/fj.11-181990 CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Gangadoo S, Dinev I, Chapman J et al (2018) Selenium nanoparticles in poultry feed modify gut microbiota and increase abundance of Faecalibacterium prausnitzii. Appl Microbiol Biotechnol 102:1455–1466.  https://doi.org/10.1007/s00253-017-8688-4 CrossRefPubMedGoogle Scholar
  127. 127.
    Zhai Q, Cen S, Li P et al (2018) Effects of dietary selenium supplementation on intestinal barrier and immune responses associated with its modulation of gut microbiota. Environ Sci Technol Lett 5:724–730CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Pathobiology Graduate ProgramThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Veterinary and Biomedical SciencesThe Pennsylvania State UniversityUniversity ParkUSA
  3. 3.Center for Molecular Immunology and Infectious DiseaseThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations