Supplementation with an Inorganic Iron Source Modulates the Metalloproteomic Profile of the Royal Jelly Produced by Apis mellifera L.

  • Wellington Luiz de Paula AraújoEmail author
  • Adriana Fava Negrão
  • José Cavalcante souza Vieira
  • Alis Correia Bittarello
  • Pedro de Magalhães Padilha
  • Ricardo de Oliveira Orsi


This study aimed to evaluate the quality of the royal jelly produced by Apis mellifera bees in the presence of different iron concentrations (ferrous sulfate heptahydrate—0, 25, 50, and 100 mg L−1). Two-dimensional electrophoresis was used for the fractionation of royal jelly proteins, and iron level was quantified using flame atomic absorption spectrometry technique. The proteins were identified using electrospray ionisation mass spectrometry. Analysis of variance followed by the Tukey test (P < 0.05) was utilised. Dietary supplementation with mineral Fe affected the protein content and number of proteins in the experimental period. Further, the diet containing the highest iron concentration showed a greater number of spots containing iron, as well as in the abdomen of the bees. The most protein containing Fe were classified as major royal jelly proteins. These results showed that Fe influenced the quality of royal jelly and can improve its nutritional value.


Mineral supplementation Bees Protein Metallomics Atomic absorption 



  1. 1.
    Li P, Yin Y-L, Li D, Woo Kim S, Wu G (2007) Amino acids and immune function. Br J Nutr 98(2):237. CrossRefPubMedGoogle Scholar
  2. 2.
    Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19(1):5. CrossRefGoogle Scholar
  3. 3.
    Nichol H, Law JH, Winzerling JJ (2002) Iron metabolism in insects. Annu Rev Entomol 47(1):535–559. CrossRefPubMedGoogle Scholar
  4. 4.
    Crabtree B, Newsholme EA (1972) Comparative aspects of fuel utilization and metabolism by muscle. Insect Muscle (ed P N R Usherwood):405–500Google Scholar
  5. 5.
    Manning R (2016) Artificial feeding of honeybees based on an understanding of nutritional principles. Anim Prod Sci 58(4):689. CrossRefGoogle Scholar
  6. 6.
    Brodschneider R, Crailsheim K (2010) Nutrition and health in honey bees. Apidologie 41(3):278–294. CrossRefGoogle Scholar
  7. 7.
    Deseyn J, Billen J (2005) Age-dependent morphology and ultrastructure of the hypopharyngeal gland of Apis mellifera workers (Hymenoptera, Apidae). Apidologie 36(1):49–57. CrossRefGoogle Scholar
  8. 8.
    Coelho MS, Silva JH, Oliveira JHV, Oliviera ERA, Araújo JA, Lima MR (2008) Alimentos convencionais e alternativos para abelhas. Caatinga, v. 21, n. 1, pp 1–9Google Scholar
  9. 9.
    Wang D (1965) Growth rates of young queen and worker-honeybee larvae. J Apic Res, v 4:3–5CrossRefGoogle Scholar
  10. 10.
    Alves MLTMF (2012) Avaliação do potencial antioxidante da geleia real ao longo do tempo de armazenamento. Biotemas 25(3):257–263. CrossRefGoogle Scholar
  11. 11.
    Carvalheira JBC, Zecchin HG, Saad MJA (2002) Vias de Sinalização da Insulina. Arq Bras Endocrinol Metabol 46(4):419–425. CrossRefGoogle Scholar
  12. 12. (2018) UniProt. Retirado 18 de maio de 2018, de Accessed 20 Apr 2018
  13. 13.
    Braga CP, Bittarello AC, Padilha CCF, Leite AL, Moraes PM, Buzalaf MAR, Zara LF, Padilha PM (2015) Mercury fractionation in dourada (Brachyplatystoma rousseauxii) of the Madeira River in Brazil using metalloproteomic strategies. Talanta 132:239–244. CrossRefPubMedGoogle Scholar
  14. 14.
    Sun Y, An S, Henrich VC, Xiaoping Sun A, & Song Q (2007) Proteomic identification of PKC-mediated expression of 20E-induced protein in Drosophila melanogaster.
  15. 15.
    Xiao-Fan Zhao, H.-J. He, Du-Juan Dong, & Wang, J.-X. (2005). Identification of differentially expressed proteins during larval molting of Helicoverpa armigera. 10.1021/PR0502424Google Scholar
  16. 16.
    Zhang G, Zhang W, Cui X, Xu B (2015) Zinc nutrition increases the antioxidant defenses of honey bees. Entomol Exp Appl 156(3):201–210. CrossRefGoogle Scholar
  17. 17.
    Herbert EW Jr, Shimanuki H (1978) Mineral requirements for brood-rearing by honeybees fed a synthetic diet. J Apic Res 17(3):118–122CrossRefGoogle Scholar
  18. 18.
    Doolittle GMM (1899) Doolittle ́s queen rearing methods. Am Bee J 39(28):435–436Google Scholar
  19. 19.
    Vieira JCS, Cavecci B, Queiroz JV, Braga CP, Padilha CCF, Leite AL, Figueiredo WS, Buzalaf MAR, Zara LF, Padilha PM (2015) Determination of the mercury fraction linked to protein of muscle and liver tissue of Tucunaré (Cichla spp.) from the Amazon Region of Brazil. Arch Environ Contam Toxicol 69(4):422–430. CrossRefPubMedGoogle Scholar
  20. 20.
    dos Santos FA, Cavecci B, Vieira JCS, Franzini VP, Santos A, de Lima Leite A, Buzalaf MAR, de Zara LF, Magalhães Padilha P (2015) A metalloproteomics study on the association of mercury with breast milk in samples from lactating women in the Amazon Region of Brazil. Arch Environ Contam Toxicol 69(2):223–229. CrossRefPubMedGoogle Scholar
  21. 21.
    Lima, P. M., Neves, R. D. C. F., dos Santos, F. A, Pérez, C. A, da Silva, M. O. A, Arruda, M. A Z., … Padilha, P. M. (2010). Analytical approach to the metallomic of Nile tilapia (Oreochromis niloticus) liver tissue by SRXRF and FAAS after 2D-PAGE separation: preliminary results. Talanta, 82(3), 1052–1056. CrossRefPubMedGoogle Scholar
  22. 22.
    Moraes PM, Santos FA, Padilha CCF, Vieira JCS, Zara LF, de Padilha PM (2012) A preliminary and qualitative metallomics study of mercury in the muscle of fish from Amazonas, Brazil. Biol Trace Elem Res 150(1–3):195–199. CrossRefPubMedGoogle Scholar
  23. 23.
    Handbook, Shimadzu Cook (2007) "Atomic Absorption Spectrophotometry cookbook." Shimadzu Corporation. Kyoto. JapanGoogle Scholar
  24. 24.
    Shevchenko A, Tomas H, Havli J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860. CrossRefGoogle Scholar
  25. 25.
    Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676. CrossRefGoogle Scholar
  26. 26.
    Zar JH (2010) Bioestatistical analysis. Pretince Hall, New Jersey, p 944Google Scholar
  27. 27.
    da Silva EG, Jóia PR (2010) Questões Ambientais e Sócio Econômicas da Apicultura nos Municípios de Aquidauana e Anastácio-MS. Rev Pantaneira 12:37–43Google Scholar
  28. 28.
    Giannini TC, Acosta AL, Garófalo CA, Saraiva AM, Alves-dos-Santos I, Imperatriz-Fonseca VL (2012) Pollination services at risk: bee habitats will decrease owing to climate change in Brazil. Ecol Model 244:127–131CrossRefGoogle Scholar
  29. 29.
    Anderson L et al (1990) Metabolismo mineral. In: Nutrição. Guanabara Koogan, Rio de Janeiro, pp 63–92Google Scholar
  30. 30.
    Schmitzová J, Klaudiny J, Albert Š, Schröder W, Schreckengost W, Hanes J, Júdová J, Šimúth J (1998) A family of major royal jelly proteins of the honeybee Apis mellifera L. Cell Mol Life Sci CMLS 54(9):1020–1030. CrossRefPubMedGoogle Scholar
  31. 31.
    Yu F, Mao F, Jianke L (2010) Royal jelly proteome comparison between A. mellifera ligustica and A. cerana cerana. J Proteome Res 9(5):2207–2215. CrossRefPubMedGoogle Scholar
  32. 32.
    Hartfelder K, Makert GR, Judice CC, Pereira GAG, Santana WC, Dallacqua R, Bitondi MMG (2006) Physiological and genetic mechanisms underlying caste development, reproduction and division of labor in stingless bees. Apidologie 37(2):144–163. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wellington Luiz de Paula Araújo
    • 1
    Email author
  • Adriana Fava Negrão
    • 1
  • José Cavalcante souza Vieira
    • 2
  • Alis Correia Bittarello
    • 2
  • Pedro de Magalhães Padilha
    • 2
  • Ricardo de Oliveira Orsi
    • 1
  1. 1.UNESP - São Paulo State UniversitySchool of Veterinary Medicine and Animal ScienceBotucatuBrasil
  2. 2.UNESP - São Paulo State UniversityInstitute of Biosciences of BotucatuBotucatuBrasil

Personalised recommendations