Advertisement

Synergistic Effects of Selenium Nanoparticles and Vitamin E on Growth, Immune-Related Gene Expression, and Regulation of Antioxidant Status of Nile Tilapia (Oreochromis niloticus)

  • Mahmoud A. O. DawoodEmail author
  • Mohsen Zommara
  • Nabil M. Eweedah
  • Azmy I. Helal
Article
  • 36 Downloads

Abstract

The present study was conducted to investigate the effects of nano-selenium (Nano Se) or/and vitamin E (VE) on growth performance, blood health, intestinal histomorphology, oxidative status, and immune-related gene expression of Nile tilapia. Nano Se or/and VE at a rate of 0, 1 mg Nano Se/kg, 100 mg VE/kg, and 1 mg Nano Se/kg + 100 mg VE diet were fed to fish for 8 weeks. FBW was significantly (P < 0.05) increased in fish fed with Nano Se and VE, while fish fed with Nano Se or Nano Se and VE diets displayed significantly (P < 0.05) higher WG and SGR than the other groups. The lowest FCR was significantly (P < 0.05) detected in fish fed with Nano Se and VE, while the highest value was observed in fish VE diet. The intestinal morphometry (villi length and width) of fish fed with Nano Se or/and VE reported significantly (P < 0.05) the highest values with high number of goblet cells. Blood hematology and biochemistry parameters of fish fed with Nano Se or/and VE showed normal values with insignificant differences except for the blood total protein increased in fish fed with Nano Se or/and VE (P < 0.05). Dietary Nano Se or Nano Se and VE significantly (P < 0.05) increased the GPX, SOD, CAT, NBT, lysozyme, and phagocytosis values with decreased MDA. Liver and spleen TNF-α and IL-1β expressions were significantly (P < 0.05) upregulated in fish fed on Nano Se or Nano Se and VE. Thus, Nano Se or/and VE can be used effectively in tilapia diets for improving the growth, intestinal health, blood health, oxidative status, and immune-related gene expression.

Keywords

Growth performance Histomorphology Immunity Nano-selenium Nile tilapia Oxidative status Vitamin E 

Notes

Funding Information

This work was financially supported in the framework of the project “Biological production of nano-selenium spheres and its application in livestock production” by the National Strategy for Genetic Engineering and Biotechnology, Academy of Scientific Research and Technology, Egypt.

Compliance with Ethical Standards

The experimental protocol was approved by the research animal care and use committee of the Faculty of Agriculture Kafrelsheikh University, Egypt.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pacitti D, Lawan MM, Feldmann J, Sweetman J, Wang T, Martin SA, Secombes CJ (2016) Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex®. BMC Genomics 17(1):116.  https://doi.org/10.1186/s12864-016-2418-7 CrossRefGoogle Scholar
  2. 2.
    Gobi N, Vaseeharan B, Rekha R, Vijayakumar S, Faggio C (2018) Bioaccumulation, cytotoxicity and oxidative stress of the acute exposure selenium in Oreochromis mossambicus. Ecotoxicol Environ Saf 162:147–159.  https://doi.org/10.1016/j.ecoenv.2018.06.070 CrossRefGoogle Scholar
  3. 3.
    Le KT, Fotedar R (2013) Dietary selenium requirement of yellowtail kingfish (Seriola lalandi). Agric Sci 4(6A):68.  https://doi.org/10.4236/as.2013.46A011 Google Scholar
  4. 4.
    Pagano M, Porcino C, Briglia M, Fiorino E, Vazzana M, Silvestro S, Faggio C (2017) The influence of exposure of cadmium chloride and zinc chloride on haemolymph and digestive gland cells from Mytilus galloprovincialis. Int J Environ Res 11(2):207–216.  https://doi.org/10.1007/s41742-017-0020-8 CrossRefGoogle Scholar
  5. 5.
    Aliko V, Qirjo M, Sula E, Morina V, Faggio C (2018) Antioxidant defense system, immune response and erythron profile modulation in Goldfish, Carassius auratus, after acute manganese treatment. Fish Shellfish Immunol 76:101–109.  https://doi.org/10.1016/j.fsi.2018.02.042 CrossRefGoogle Scholar
  6. 6.
    Dawood MAO, Koshio S, Zaineldin AI, Van Doan H, Moustafa EM, Abdel-Daim MM, Esteban MA, Hassaan MS (2019) Dietary supplementation of selenium nanoparticles modulated systemic and mucosal immune status and stress resistance of red sea bream (Pagrus major). Fish Physiol Biochem 45(1):219–230.  https://doi.org/10.1007/s10695-018-0556-3 CrossRefGoogle Scholar
  7. 7.
    Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, Uddin MS, Aleya L, Abdel-Daim MM (2019) Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res 2019:1–8.  https://doi.org/10.1007/s11356-019-05211-0 Google Scholar
  8. 8.
    Abdel-Daim MM, Eissa IA, Abdeen A, Abdel-Latif HM, Ismail M, Dawood MAO, Hassan AM (2019) Lycopene and resveratrol ameliorate zinc oxide nanoparticles-induced oxidative stress in Nile tilapia, Oreochromis niloticus. Environ Toxicol Pharmacol 69:44–50.  https://doi.org/10.1016/j.etap.2019.03.016 CrossRefGoogle Scholar
  9. 9.
    Ashouri S, Keyvanshokooh S, Salati AP, Johari SA, Pasha-Zanoosi H (2015) Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture 446:25–29.  https://doi.org/10.1016/j.aquaculture.2015.04.021 CrossRefGoogle Scholar
  10. 10.
    Naderi M, Keyvanshokooh S, Ghaedi A, Salati AP (2019) Interactive effects of dietary nano selenium and vitamin E on growth, haematology, innate immune responses, antioxidant status and muscle composition of rainbow trout under high rearing density. Aquac Nutr.  https://doi.org/10.1111/anu.12931?af=R
  11. 11.
    Naderi M, Keyvanshokooh S, Salati AP, Ghaedi A (2017) Combined or individual effects of dietary vitamin E and selenium nanoparticles on humoral immune status and serum parameters of rainbow trout (Oncorhynchus mykiss) under high stocking density. Aquaculture 474:40–47.  https://doi.org/10.1016/j.aquaculture.2017.03.036 CrossRefGoogle Scholar
  12. 12.
    Yeung AW, Tzvetkov NT, El-Tawil OS, Bungǎu SG, Abdel-Daim MM, Atanasov AG (2019) Antioxidants: scientific literature landscape analysis. Oxidative Med Cell Longev 2019.  https://doi.org/10.1155/2019/8278454
  13. 13.
    Liu B, Xu P, Xie J, Ge X, Xia S, Song C, Zhou Q, Miao L, Ren M, Pan L, Chen R (2014) Effects of emodin and vitamin E on the growth and crowding stress of Wuchang bream (Megalobrama amblycephala). Fish Shellfish Immunol 40:595–602.  https://doi.org/10.1016/j.fsi.2014.08.009 CrossRefGoogle Scholar
  14. 14.
    Zhao H, Ma HJ, Gao SN, Chen XR, Chen YJ, Zhao PF, Lin SM (2018) Evaluation of dietary vitamin E supplementation on growth performance and antioxidant status in hybrid snakehead (Channa argus × Channa maculata). Aquac Nutr 24:625–632.  https://doi.org/10.1111/anu.12552 CrossRefGoogle Scholar
  15. 15.
    Naderi M, Keyvanshokooh S, Salati AP, Ghaedi A (2017) Effects of dietary vitamin E and selenium nanoparticles supplementation on acute stress responses in rainbow trout (Oncorhynchus mykiss) previously subjected to chronic stress. Aquaculture 473:215–222.  https://doi.org/10.1016/j.aquaculture.2017.02.020 CrossRefGoogle Scholar
  16. 16.
    Naderi M, Keyvanshokooh S, Salati AP, Ghaedi A (2017) Proteomic analysis of liver tissue from rainbow trout (Oncorhynchus mykiss) under high rearing density after administration of dietary vitamin E and selenium nanoparticles. Comp Biochem Physiol Part D Genomics Proteomics 22:10–19.  https://doi.org/10.1016/j.cbd.2017.02.001 CrossRefGoogle Scholar
  17. 17.
    Le KT, Dao TT, Fotedar R, Partrigde GJ (2014) Effects of variation in dietary contents of selenium and vitamin E on growth and physiological and haematological responses of yellowtail kingfish, Seriola lalandi. Aquac Int 22:435–446.  https://doi.org/10.1007/s10499-013-9651-8 CrossRefGoogle Scholar
  18. 18.
    Le KT, Dao TT, Fotedar R, Partrigde GJ (2014) Selenium and vitamin E interaction in the nutrition of yellowtail kingfish (Seriola lalandi): Physiological and immune responses. Aquac Nutr 20:303–313.  https://doi.org/10.1111/anu.12079 CrossRefGoogle Scholar
  19. 19.
    Chen YJ, Liu YJ, Tian LX, Niu J, Liang GY, Yang HJ, Yuan Y, Zhang YQ (2013) Effect of dietary vitamin E and selenium supplementation on growth, body composition, and antioxidant defense mechanism in juvenile largemouth bass (Micropterus salmoide) fed oxidized fish oil. Fish Physiol Biochem 39:593–604.  https://doi.org/10.1007/s10695-012-9722-1 CrossRefGoogle Scholar
  20. 20.
    Zommara MA (2007) Production of organic selenium enriched yoghurt. J Agric Res Kafrelsheikh Univ:31–820Google Scholar
  21. 21.
    Prokisch J, Széles É, Kovács B, Daróczy L, Zommara M (2008) Formation of metal selenium nanospheres in bacteria: is it a possible detoxification mechanism? Cereal Res Commun 36:947–950Google Scholar
  22. 22.
    Prokisch J, Sztrik A, Babka B, Eszenyi P, Pardi J, Mika Z, Zommara M (2011) Novel Fermentation technology for production of selenium nanospheres (Lactomicrosel®) and its testing for feed and food applications. In 2nd International conference on selenium in the environment and human health china-singapore suzhou industrial park, Suzhou, China (23-28 October)Google Scholar
  23. 23.
    Eszenyi P, Sztrik A, Babka B, Prokisch J (2011) Production of Lactomicrosel® and nanosize (100-500 NM) selenium spheres by probiotic lactic acid bacteria. In: International Conference on Food Engineering and Biotechnology IPCBEE (Vol. 9, pp. 858-862)Google Scholar
  24. 24.
    Dawood MAO, Eweedah NM, Moustafa EM, Shahin MG (2019) Synbiotic effects of Aspergillus oryzae and β-glucan on growth and oxidative and immune responses of Nile tilapia, Oreochromis niloticus. Probiotics Antimicrob Proteins 2019.  https://doi.org/10.1007/s12602-018-9513-9
  25. 25.
    Dawood MAO, Magouz FI, Salem MFI, Abdel-Daim HA (2019) Modulation of digestive enzyme activity, blood health, oxidative responses and growth-related gene expression in GIFT by heat-killed Lactobacillus plantarum (L-137). Aquaculture 505:127–136.  https://doi.org/10.1016/j.aquaculture.2019.02.053 CrossRefGoogle Scholar
  26. 26.
    AOAC (2012) Official Methods of Analysis of AOAC international, 19th edn. AOAC International, Gaithersburg www.eoma.aoac.org Google Scholar
  27. 27.
    Suvarna SK, Layton C, Bancroft JD (2012) The hematoxylins and eosin. Bancroft’s Theory and Practice of Histological Techniques. E-Book 7th Edition. Accessed October 1, 2012:173-186. https://www.elsevier.com/books/bancrofts-theory-and-practice-of-histological-techniques-e-book/suvarna/978-0-7020-5032-9
  28. 28.
    Houston A (1990) Blood and circulation’. Methods Fish Biol:273–334Google Scholar
  29. 29.
    Lucky Z (1977) Methods for the diagnosis of fish diseases. Amerind publishing Co, PTV. LTD, New Delhi, p 131Google Scholar
  30. 30.
    Schalm OW (1986) Veterinary hematology, 4th edn. Lea and Febiger, PhiladelphiaGoogle Scholar
  31. 31.
    Blaxhall PC, Daisley KW (1973) Routine haematological methods for use with fish blood. J Fish Biol 5(6):771–781.  https://doi.org/10.1111/j.1095-8649.1973.tb04510.x CrossRefGoogle Scholar
  32. 32.
    Secombes CJ (1990) Isolation of salmonid macrophages and analysis of their killing activity. Tech Fish Immunol 1:137–154 https://ci.nii.ac.jp/naid/20000760734 Google Scholar
  33. 33.
    Kawahara E, Ueda T, Nomura S (1991) In vitro phagocytic activity of white-spotted char blood cells after injection with Aeromonas salmonicida extracellular products. Fish Pathol 26(4):213–214.  https://doi.org/10.3147/jsfp.26.213 CrossRefGoogle Scholar
  34. 34.
    Parry RM, Chandon RC, Shahani KM (1965) A rapid and sensitive assay of muramidase. Proc Soc Exp Biol Med 119:384–386.  https://doi.org/10.3181/00379727-119-30188 CrossRefGoogle Scholar
  35. 35.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29(9):45–45 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC55695/ CrossRefGoogle Scholar
  36. 36.
    Dawood MAO, Koshio S (2018) Vitamin C supplementation to optimize growth, health and stress resistance in aquatic animals. Rev Aquac 10(2):334–350.  https://doi.org/10.1111/raq.12163 CrossRefGoogle Scholar
  37. 37.
    Dawood MAO, Koshio S, Abdel-Daim MM, Van Doan H (2018) Probiotic application for sustainable aquaculture. Rev Aquac.  https://doi.org/10.1111/raq.12272
  38. 38.
    Dawood MAO, Koshio S, Esteban MÁ (2018) Beneficial roles of feed additives as immunostimulants in aquaculture: a review. Rev Aquac 10(4):950–974.  https://doi.org/10.1111/raq.12209 CrossRefGoogle Scholar
  39. 39.
    El Basuini MF, El-Hais AM, Dawood MAO, Abou-Zeid AS, EL-Damrawy SZ, Khalafalla MS, Koshio S, Ishikawa M, Dossou S (2017) Effects of dietary copper nanoparticles and vitamin C supplementations on growth performance, immune response and stress resistance of red sea bream, Pagrus major. Aquac Nutr 23(6):1329–1340.  https://doi.org/10.1111/anu.12508 CrossRefGoogle Scholar
  40. 40.
    Yan J, Li Y, Liang X, Zhang Y, Dawood MAO, Matuli’c D, Gao J (2017) Effects of dietary protein and lipid levels on growth performance, fatty acid composition and antioxidant-related gene expressions in juvenile loach Misgurnus anguillicaudatus. Aquac Res 48(10):5385–5393.  https://doi.org/10.1111/are.13352 CrossRefGoogle Scholar
  41. 41.
    Lee S, Nambi RW, Won S, Katya K, Bai SC (2016) Dietary selenium requirement and toxicity levels in juvenile Nile tilapia, Oreochromis niloticus. Aquaculture 464:153–158.  https://doi.org/10.1016/j.aquaculture.2016.06.027 CrossRefGoogle Scholar
  42. 42.
    Wang L, Zhang X, Wu L, Liu Q, Zhang D, Yin J (2018) Expression of selenoprotein genes in muscle is crucial for the growth of rainbow trout (Oncorhynchus mykiss) fed diets supplemented with selenium yeast. Aquaculture 492:82–90.  https://doi.org/10.1016/j.aquaculture.2018.03.054 CrossRefGoogle Scholar
  43. 43.
    Lee S, Lee JH, Bai SC (2008) Effects of different levels of dietary selenium (Se) on growth, tissue Se accumulations and histopathological changes in black sea bream, Acanthopagrus schlegeli. Asian Australas J Anim Sci 21:1794–1799CrossRefGoogle Scholar
  44. 44.
    Amlashi AS, Falahatkar B, Sattari M, Gilani MT (2011) Effect of dietary vitamin E on growth, muscle composition, hematological and immunological parameters of sub-yearling beluga Huso huso L. Fish Shellfish Immunol 30:807–814.  https://doi.org/10.1016/j.fsi.2011.01.002 CrossRefGoogle Scholar
  45. 45.
    Li J, Liang XF, Tan Q, Yuan X, Liu L, Zhou Y, Li B (2014) Effects of vitamin E on growth performance and antioxidant status in juvenile grass carp Ctenopharyngodon idellus. Aquaculture 430:21–27.  https://doi.org/10.1016/j.aquaculture.2014.03.019 CrossRefGoogle Scholar
  46. 46.
    Peng S, Chen L, Qin JG, Hou J, Yu N, Long Z, Li E, Ye J (2009) Effects of dietary vitamin E supplementation on growth performance, lipid peroxidation and tissue fatty acid composition of black sea bream (Acanthopagrus schlegeli) fed oxidized fish oil. Aquac Nutr 15:329–337.  https://doi.org/10.1111/j.1365-2095.2009.00657.x CrossRefGoogle Scholar
  47. 47.
    Gao J, Koshio S, Ishikawa M, Yokoyama S, Mamauag RE, Han Y (2012) Effects of dietary oxidized fish oil with vitamin E supplementation on growth performance and reduction of lipid peroxidation in tissues and blood of red sea bream Pagrus major. Aquaculture 356:73–79.  https://doi.org/10.1016/j.aquaculture.2012.05.034 CrossRefGoogle Scholar
  48. 48.
    Pirarat N, Boonananthanasarn S, Krongpong L, Katagiri T, Maita M (2015) Effect of activated charcoal-supplemented diet on growth performance and intestinal morphology of Nile tilapia (Oreochromis niloticus). Thai J Vet Med 45:113–119 https://www.tci-thaijo.org/index.php/tjvm/article/view/32140 Google Scholar
  49. 49.
    Lauriano ER, Pergolizzi S, Capillo G, Kuciel M, Alesci A, Faggio C (2016) Immunohistochemical characterization of Toll-like receptor 2 in gut epithelial cells and macrophages of goldfish Carassius auratus fed with a high-cholesterol diet. Fish Shellfish Immunol 59:250–255.  https://doi.org/10.1016/j.fsi.2016.11.003 CrossRefGoogle Scholar
  50. 50.
    Caspary WF (1992) Physiology and pathophysiology of intestinal absorption. Am J Clin Nutr:299S–308S.  https://doi.org/10.1093/ajcn/55.1.299s
  51. 51.
    Shenkin A (2006) Micronutrients in health and disease. Postgrad Med J 82(971):559–567.  https://doi.org/10.1136/pgmj.2006.047670 CrossRefGoogle Scholar
  52. 52.
    Shi L, Xun W, Yue W, Zhang C, Ren Y, Liu Q, Wang Q, Shi L (2011) Effect of elemental nano-selenium on feed digestibility, rumen fermentation, and purine derivatives in sheep. Anim Feed Sci Technol 163(2-4):136–142.  https://doi.org/10.1016/j.anifeedsci.2010.10.016 CrossRefGoogle Scholar
  53. 53.
    Mello HD, Moraes J, Niza IG, Moraes FR, Ozório R, Shimada MT, Engracia F, Claudiano G (2013) Efeitos benéficos de probióticos no intestino de juvenis de Tilápia-do-Nilo. Pesqui Vet Bras 33:724–730.  https://doi.org/10.1590/S0100-736X2013000600006 CrossRefGoogle Scholar
  54. 54.
    Noga EJ (1995) Fish disease. diagnosis and treatment. Mosby-Year Book, St Louis 367pGoogle Scholar
  55. 55.
    Junqueira LCU, Carneiro J (2005) Basic histology: text & atlas. McGraw-Hill ProfessionalGoogle Scholar
  56. 56.
    Schwarz KK, Furuya WM, Natali MR, Michelato M, Gualdezi MC (2010) Mannanoligosaccharides in diets for Nile tilapia, juveniles. Acta Sci 32(2):197–203Google Scholar
  57. 57.
    Hoseinifar SH, Yousefi S, Capillo G, Paknejad H, Khalili M, Tabarraei A, Van Doan H, Spanò N, Faggio C (2018) Mucosal immune parameters, immune and antioxidant defence related genes expression and growth performance of zebrafish (Danio rerio) fed on Gracilaria gracilis powder. Fish Shellfish Immunol 83:232–237.  https://doi.org/10.1016/j.fsi.2018.09.046 CrossRefGoogle Scholar
  58. 58.
    Jinendiran S, Nathan AA, Ramesh D, Vaseeharan B, Sivakumar N (2019) Modulation of innate immunity, expression of cytokine genes and disease resistance against Aeromonas hydrophila infection in goldfish (Carassius auratus) by dietary supplementation with Exiguobacterium acetylicum S01. Fish Shellfish Immunol 84:458–469.  https://doi.org/10.1016/j.fsi.2018.10.026 CrossRefGoogle Scholar
  59. 59.
    Burgos-Aceves MA, Cohen A, Smith Y, Faggio C (2018) MicroRNAs and their role on fish oxidative stress during xenobiotic environmental exposures. Ecotoxicol Environ Saf 148:995–1000.  https://doi.org/10.1016/j.ecoenv.2017.12.001 CrossRefGoogle Scholar
  60. 60.
    Burgos Aceves MA, Lionetti L, Faggio C (2019) Multidisciplinary hematology as prognostic device in environmental and xenobiotic stress-induced response in fish. Sci Total Environ 670:1170–1183.  https://doi.org/10.1016/j.scitotenv.2019.03.275 CrossRefGoogle Scholar
  61. 61.
    Faggio C, Fedele G, Arfuso F, Panzera M, Fazio F (2014) Haematological and biochemical response of Mugil cephalus after acclimation to captivity. Cah Biol Mar 55:31–36 http://www.sb-roscoff.fr/CBM/ Google Scholar
  62. 62.
    Fazio F, Marafioti S, Torre A, Sanfilippo M, Panzera M, Faggio C (2013) Haematological and serum protein profiles of Mugil cephalus: effect of two different habitat. Ichthyol Res 60(1):36–42.  https://doi.org/10.1007/s10228-012-0303-1 CrossRefGoogle Scholar
  63. 63.
    Dawood MAO, Koshio S, Ishikawa M, Yokoyama S (2016) Immune responses and stress resistance in red sea bream, Pagrus major, after oral administration of heat-killed Lactobacillus plantarum and vitamin C. Fish Shellfish Immunol 54:266–275.  https://doi.org/10.1016/j.fsi.2016.04.017 CrossRefGoogle Scholar
  64. 64.
    Uribe C, Folch H, Enriquez R, Moran G (2011) Innate and adaptive immunity in teleost fish: a review. Vet Med 56:486–503 http://vri.cz/docs/vetmed/56-10-486.pdf CrossRefGoogle Scholar
  65. 65.
    Vallejos-Vidal E, Reyes-López F, Teles M, MacKenzie S (2016) The response of fish to immunostimulant diets. Fish Shellfish Immunol 56:34–69.  https://doi.org/10.1016/j.fsi.2016.06.028 CrossRefGoogle Scholar
  66. 66.
    Cerezuela R, Guardiola FA, González P, Meseguer J, Esteban MÁ (2012) Effects of dietary Bacillus subtilis, Tetraselmis chuii, and Phaeodactylum tricornutum, singularly or in combination, on the immune response and disease resistance of sea bream (Sparus aurata L.). Fish Shellfish Immunol 33:342–349.  https://doi.org/10.1016/j.fsi.2012.05.004 CrossRefGoogle Scholar
  67. 67.
    Rodríguez A, Esteban MA, Meseguer J (2003) Phagocytosis and peroxidase release by seabream (Sparus aurata L.) leucocytes in response to yeast cells. Anat Rec A Discov Mol Cell Evol Biol 272A:415–423.  https://doi.org/10.1002/ar.a.10048 CrossRefGoogle Scholar
  68. 68.
    Saurabh S, Sahoo PK (2008) Lysozyme: an important defence molecule of fish innate immune system. Aquac Res 39:223–239.  https://doi.org/10.1111/j.1365-2109.2007.01883.x CrossRefGoogle Scholar
  69. 69.
    Harikrishnan R, Kim JS, Kim MC, Balasundaram C, Heo MS (2011) Prunella vulgaris enhances the non-specific immune response and disease resistance of Paralichthys olivaceus against Uronema marinum. Aquaculture 318:61–66.  https://doi.org/10.1016/j.aquaculture.2011.05.020 CrossRefGoogle Scholar
  70. 70.
    Köhrle J, Brigelius-Flohé R, Böck A, Gärtner R, Meyer O, Flohé L (2000) Selenium in biology: facts and medical perspectives. Biol Chem 381(9-10):849–864.  https://doi.org/10.1515/BC.2000.107 CrossRefGoogle Scholar
  71. 71.
    Fattman CL, Schaefer LM, Oury TD (2003) Extracellular superoxide dismutase in biology and medicine. Free Radic Biol Med 35(3):236–256.  https://doi.org/10.1016/S0891-5849(03)00275-2 CrossRefGoogle Scholar
  72. 72.
    Kandeil MA, Mohammed ET, Hashem KS, Aleya L, Abdel-Daim MM (2019) Moringa seed extract alleviates titanium oxide nanoparticles (TiO2-NPs)-induced cerebral oxidative damage and increases cerebral mitochondrial. Environ Sci Pollut Res:1–6.  https://doi.org/10.1007/s11356-019-05514-2
  73. 73.
    Dawood MAO, Shukry M, Zayed MM, Omar AA, Zaineldin AI, El Basuini MF (2019) Digestive enzymes, immunity and oxidative status of Nile tilapia (Oreochromis niloticus) reared in intensive conditions. Slov Vet Res 6(22-Suppl).  https://doi.org/10.26873/SVR-747-2019
  74. 74.
    Yao J, Wang JY, Liu L, Li YX, Xun AY, Zeng WS, Jia CH, Wei XX, Feng JL, Zhao L, Wang LS (2010) Anti-oxidant effects of resveratrol on mice with DSS-induced Ulcerative Colitis. Arch Med Res 41:288–294.  https://doi.org/10.1016/j.arcmed.2010.05.002 CrossRefGoogle Scholar
  75. 75.
    Bai Z, Ren T, Han Y, Hu Y, Schohel MR, Jiang Z (2019) Effect of dietary Bio-fermented selenium on growth performance, nonspecific immune enzyme, proximate composition and bioaccumulation of zebrafish (Danio rerio). Aquac Rep 13:100180.  https://doi.org/10.1016/j.aqrep.2019.100180 CrossRefGoogle Scholar
  76. 76.
    Zhong Y, Lall SP, Shahidi F (2007) Effects of oxidized dietary oil and vitamin E supplementation on lipid profile and oxidation of muscle and liver of juvenile Atlantic cod (Gadus morhua). J Agric Food Chem 55:6379–6386.  https://doi.org/10.1021/jf070124w CrossRefGoogle Scholar
  77. 77.
    Abarike ED, Kuebutornye FK, Jian J, Tang J, Lu Y, Cai J (2018) Influences of immunostimulants on phagocytes in cultured fish: a mini review. Rev Aquac:1–9.  https://doi.org/10.1111/raq.12288
  78. 78.
    Wang W, Ishikawa M, Koshio S, Yokoyama S, Dawood MAO, Hossain MS, Moss AS (2019) Effects of dietary astaxanthin and vitamin E and their interactions on the growth performance, pigmentation, digestive enzyme activity of kuruma shrimp (Marsupenaeus japonicus). Aquac Res 50(4):1186–1197.  https://doi.org/10.1111/are.13993 CrossRefGoogle Scholar
  79. 79.
    Xia Y, Lu M, Chen G, Cao J, Gao F, Wang M, Liu Z, Zhang D, Zhu H, Yi M (2018) Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 76:368–379.  https://doi.org/10.1016/j.fsi.2018.03.020 CrossRefGoogle Scholar
  80. 80.
    Bilen S, Sirtiyah AM, Terzi E (2019) Therapeutic effects of beard lichen, Usnea barbata extract against Lactococcus garvieae infection in rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 87:401–409.  https://doi.org/10.1016/j.fsi.2019.01.046 CrossRefGoogle Scholar
  81. 81.
    Low C, Wadsworth S, Burrells C, Secombes CJ (2003) Expression of immune genes in turbot (Scophthalmus maximus) fed a nucleotide-supplemented diet. Aquaculture 221(1-4):23–40.  https://doi.org/10.1016/S0044-8486(03)00022-X CrossRefGoogle Scholar
  82. 82.
    Striz I, Brabcova E, Kolesar L, Sekerkova A (2014) Cytokine networking of innate immunity cells: a potential target of therapy. Clin Sci 126:593–612.  https://doi.org/10.1042/CS20130497 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Animal Production, Faculty of AgricultureKafrelsheikh UniversityKafrelsheikhEgypt
  2. 2.Department of Dairy Science, Faculty of AgricultureKafrelsheikh UniversityKafrelsheikhEgypt

Personalised recommendations