Advertisement

Selenoproteins of the Human Prostate: Unusual Properties and Role in Cancer Etiology

  • Alan M. DiamondEmail author
Article
  • 24 Downloads

Abstract

The prostate is an important organ for the maintenance of sperm health with prostate cancer being a common disease for which there is a critical need to distinguish indolent from aggressive disease. Several selenium-containing proteins have been implicated in prostate cancer risk or outcome due to either enzyme function, the reduced levels of these proteins being associated with cancer recurrence after prostatectomy or their corresponding genes containing single-nucleotide polymorphisms associated with increased risk. Moreover, experimental data obtained from the manipulation of either cultured cells or animal models have indicated that some of these proteins are contributing mechanistically to prostate cancer incidence or progression. Among these are selenocysteine-containing proteins selenoprotein P (SELENOP), glutathione peroxidase (GPX1), and selenoprotein 15 (SELENOF); and the selenium-associated protein selenium-binding protein 1 (SBP1). Genotyping of some of the genes for these proteins has identified functional single-nucleotide polymorphisms that are associated with prostate cancer risk and the direct quantification of these proteins in human prostate tissues has not only revealed associations to clinical outcomes but have also identified unique properties that are different from what is observed in other tissue types. The location of GPX1 in the nucleus and SELENOF in the plasma membrane of prostate epithelial cells indicates that these proteins may have functions in normal prostate tissue that are distinct from that of the other tissue types.

Keywords

Selenium Selenoproteins Glutathione peroxidase Selenium-binding protein 1 Selenoprotein F 

Notes

Acknowledgments

The author would like to acknowledge Lenny Hong for the critical reading of the manuscript and preparation of the figure.

Funding Information

This work was financially supported by grants from the National Institutes of Health (Grant Nos. R21CA182103, R01CA193497) and a Department of Defense Prostate Cancer Research Program Health Disparity Research Award (PC170236) to AMD.

References

  1. 1.
    Schrauzer GN, White DA, Schneider CJ (1977) Cancer mortality correlation studies. III. Statistical association with dietary selenium intakes. Bioinorg Chem 7:23–34Google Scholar
  2. 2.
    El-Bayoumy K (ed) (1991) The role of selenium in cancer prevention. Cancer Prevention. J.B. Lippincott Co., PhiladelphiaGoogle Scholar
  3. 3.
    Wang L, Bonorden MJ, Li GX, Lee HJ, Hu H, Zhang Y, Liao JD, Cleary MP, Lu J (2009) Methyl-selenium compounds inhibit prostate carcinogenesis in the transgenic adenocarcinoma of mouse prostate model with survival benefit. Cancer Prev Res (Phila) 2(5):484–495Google Scholar
  4. 4.
    Ozten N, Schlicht M, Diamond AM, Bosland MC (2014) L-selenomethionine does not protect against testosterone plus 17beta-estradiol-induced oxidative stress and preneoplastic lesions in the prostate of NBL rats. Nutr Cancer 66(5):825–834Google Scholar
  5. 5.
    McCormick DL, Rao KV, Johnson WD, Bosland MC, Lubet RA, Steele VE (2010) Null activity of selenium and vitamin e as cancer chemopreventive agents in the rat prostate. Cancer Prev Res (Phila) 3(3):381–392Google Scholar
  6. 6.
    Vinceti M, Filippini T, Del Giovane C, Dennert G, Zwahlen M, Brinkman M, Zeegers MP, Horneber M, D'Amico R, Crespi CM (2018) Selenium for preventing cancer. Cochrane Database Syst Rev 1:CD005195Google Scholar
  7. 7.
    Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr, Park HK, Sanders BB Jr, Smith CL, Taylor JR (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group JAMA 276(24):1957–1963Google Scholar
  8. 8.
    Duffield-Lillico AJ, Slate EH, Reid ME, Turnbull BW, Wilkins PA, Combs GF Jr, Park HK, Gross EG, Graham GF, Stratton MS, Marshall JR, Clark LC (2003) Selenium supplementation and secondary prevention of nonmelanoma skin cancer in a randomized trial. J Natl Cancer Inst 95(19):1477–1481Google Scholar
  9. 9.
    Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM, Hartline JA, Parsons JK, Bearden JD 3rd, Crawford ED, Goodman GE, Claudio J, Winquist E, Cook ED, Karp DD, Walther P, Lieber MM, Kristal AR, Darke AK, Arnold KB, Ganz PA, Santella RM, Albanes D, Taylor PR, Probstfield JL, Jagpal TJ, Crowley JJ, Meyskens FL Jr, Baker LH, Coltman CA Jr (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301(1):39–51Google Scholar
  10. 10.
    Hatfield DL, Gladyshev VN (2009) The outcome of Selenium and Vitamin E Cancer Prevention Trial (SELECT) reveals the need for better understanding of selenium biology. Mol Interv 9(1):18–21Google Scholar
  11. 11.
    Lu J, Zhang J, Jiang C, Deng Y, Ozten N, Bosland MC (2016) Cancer chemoprevention research with selenium in the post-SELECT era: promises and challenges. Nutr Cancer 68(1):1–17Google Scholar
  12. 12.
    Rayman MP, Combs GF Jr, Waters DJ (2009) Selenium and vitamin E supplementation for cancer prevention. JAMA 30(18):1876 author reply 1877Google Scholar
  13. 13.
    Bulteau AL, Chavatte L (2015) Update on selenoprotein biosynthesis. Antioxid Redox Signal 23(10):775–794Google Scholar
  14. 14.
    Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22(11):3565–3576Google Scholar
  15. 15.
    Berry MJ, Banu L, Chen Y, Mandel SJ, Kiefer JD, Harney JW, Larsen PR (1991) Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature 353:273–276Google Scholar
  16. 16.
    Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443Google Scholar
  17. 17.
    Diwadkar-Navsariwala V, Diamond AM (2004) The link between selenium and chemoprevention: a case for selenoproteins. J Nutr 134(11):2899–2902Google Scholar
  18. 18.
    Diwadkar-Navsariwala V, Prins GS, Swanson SM, Birch LA, Ray VH, Hedayat S, Lantvit DL, Diamond AM (2006) Selenoprotein deficiency accelerates prostate carcinogenesis in a transgenic model. Proc Natl Acad Sci U S A 103(21):8179–8184Google Scholar
  19. 19.
    Luchman HA, Villemaire ML, Bismar TA, Carlson BA, Jirik FR (2014) Prostate epithelium-specific deletion of the selenocysteine tRNA gene Trsp leads to early onset intraepithelial neoplasia. Amer J Path 184(3):871–877Google Scholar
  20. 20.
    Meplan C (2015) Selenium and chronic diseases: a nutritional genomics perspective. Nutrients 7(5):3621–3651Google Scholar
  21. 21.
    Burk RF, Hill KE (2009) Selenoprotein P-expression, functions, and roles in mammals. Biochim Biophys Acta 1790(11):1441–1447Google Scholar
  22. 22.
    Seale LA, Ha HY, Hashimoto AC, Berry MJ (2018) Relationship between selenoprotein P and selenocysteine lyase: insights into selenium metabolism. Free Radic Biol Med 127:182–189Google Scholar
  23. 23.
    Gonzalez-Moreno O, Boque N, Redrado M, Milagro F, Campion J, Endermann T, Takahashi K, Saito Y, Catena R, Schomburg L, Calvo A (2011) Selenoprotein-P is down-regulated in prostate cancer, which results in lack of protection against oxidative damage. Prostate 71(8):824–834Google Scholar
  24. 24.
    Outzen M, Tjonneland A, Larsen EH, Friis S, Larsen SB, Christensen J, Overvad K, Olsen A (2016) Selenium status and risk of prostate cancer in a Danish population. Br J Nutr 115(9):1669–1677Google Scholar
  25. 25.
    Meplan C, Crosley LK, Nicol F, Beckett GJ, Howie AF, Hill KE, Horgan G, Mathers JC, Arthur JR, Hesketh JE (2007) Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study). FASEB J 21(12):3063–3074Google Scholar
  26. 26.
    Meplan C, Nicol F, Burtle BT, Crosley LK, Arthur JR, Mathers JC, Hesketh JE (2009) Relative abundance of selenoprotein P isoforms in human plasma depends on genotype, se intake, and cancer status. Antioxid Redox Signal 11(11):2631–2640Google Scholar
  27. 27.
    Ekoue DN, Ansong E, Liu L, Macias V, Deaton R, Lacher C, Picklo M, Nonn L, Gann PH, Kajdacsy-Balla A, Prins GS, Freeman VL, Diamond AM (2018) Correlations of SELENOF and SELENOP genotypes with serum selenium levels and prostate cancer. Prostate 78(4):279–288Google Scholar
  28. 28.
    Touat-Hamici Z, Bulteau AL, Bianga J, Jean-Jacques H, Szpunar J, Lobinski R, Chavatte L (2018) Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines. Biochim Biophys Acta S0304-4165(18):30105–30103Google Scholar
  29. 29.
    Jerome-Morais A, Wright ME, Liu R, Yang W, Jackson MI, Combs GF Jr, Diamond AM (2012) Inverse association between glutathione peroxidase activity and both selenium-binding protein 1 levels and Gleason score in human prostate tissue. Prostate 72(9):1006–1012Google Scholar
  30. 30.
    Donadio JLS, Liu L, Freeman VL, Ekoue DN, Diamond AM, Bermano G (2018) Interaction of NKX3.1 and SELENOP genotype with prostate cancer recurrence. Prostate 79(5):462–467Google Scholar
  31. 31.
    Holt SK, Karyadi DM, Kwon EM, Stanford JL, Nelson PS, Ostrander EA (2008) Association of megalin genetic polymorphisms with prostate cancer risk and prognosis. Clin Cancer Res 14(12):3823–3831Google Scholar
  32. 32.
    Lubos E, Loscalzo J, Handy DE (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15(7):1957–1997Google Scholar
  33. 33.
    Zhuo P, Diamond AM (2009) Molecular mechanisms by which selenoproteins affect cancer risk and progression. Biochim Biophys Acta 115:227–242Google Scholar
  34. 34.
    Zhuo P, Goldberg M, Herman L, Lee BS, Wang H, Brown RL, Foster CB, Peters U, Diamond AM (2009) Molecular consequences of genetic variations in the glutathione peroxidase 1 selenoenzyme. Cancer Res 69(20):8183–8190Google Scholar
  35. 35.
    Bera S, Weinberg F, Ekoue DN, Ansenberger-Fricano K, Mao M, Bonini MG, Diamond AM (2014) Natural allelic variations in glutathione peroxidase-1 affect its subcellular localization and function. Cancer Res 74(18):5118–5126Google Scholar
  36. 36.
    Jablonska E, Gromadzinska J, Reszka E, Wasowicz W, Sobala W, Szeszenia-Dabrowska N, Boffetta P (2009) Association between GPx1 Pro198Leu polymorphism, GPx1 activity and plasma selenium concentration in humans. Eur J Nutr 48(6):383–386Google Scholar
  37. 37.
    Miller JC, Thomson CD, Williams SM, van Havre N, Wilkins GT, Morison IM, Ludgate JL, Skeaff CM (2012) Influence of the glutathione peroxidase 1 Pro200Leu polymorphism on the response of glutathione peroxidase activity to selenium supplementation: a randomized controlled trial. Am J Clin Nutr 96(4):923–931Google Scholar
  38. 38.
    Jablonska E, Gromadzinska J, Peplonska B, Fendler W, Reszka E, Krol MB, Wieczorek E, Bukowska A, Gresner P, Galicki M, Zambrano Quispe O, Morawiec Z, Wasowicz W (2015) Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1. BMC Cancer 15:657Google Scholar
  39. 39.
    Cardoso BR, Busse AL, Hare DJ, Cominetti C, Horst MA, McColl G, Magaldi RM, Jacob-Filho W, Cozzolino SM (2016) Pro198Leu polymorphism affects the selenium status and GPx activity in response to Brazil nut intake. Food Funct 7(2):825–833Google Scholar
  40. 40.
    Aashique M, Roy A, Diamond A, Bera S (2019) Subcellular compartmentalization of glutathione peroxidase 1 allelic isoforms differentially impact parameters of energy metabolism. J Cell Biochem 120(3):3393–3400Google Scholar
  41. 41.
    Arsova-Sarafinovska Z, Matevska N, Eken A, Petrovski D, Banev S, Dzikova S, Georgiev V, Sikole A, Erdem O, Sayal A, Aydin A, Dimovski AJ (2008) Glutathione peroxidase 1 (GPX1) genetic polymorphism, erythrocyte GPX activity, and prostate cancer risk. Int Urol Nephrol 41(1):63–70Google Scholar
  42. 42.
    Erdem O, Eken A, Akay C, Arsova-Sarafinovska Z, Matevska N, Suturkova L, Erten K, Ozgok Y, Dimovski A, Sayal A, Aydin A (2012) Association of GPX1 polymorphism, GPX activity and prostate cancer risk. Hum Exp Toxicol 31(1):24–31Google Scholar
  43. 43.
    Steinbrecher A, Meplan C, Hesketh J, Schomburg L, Endermann T, Jansen E, Akesson B, Rohrmann S, Linseisen J (2010) Effects of selenium status and polymorphisms in selenoprotein genes on prostate cancer risk in a prospective study of European men. Cancer Epidemiol Biomark Prev 19(11):2958–2968Google Scholar
  44. 44.
    Liwei L, Wei Z, Ruifa H, Chunyu L (2012) Association between genetic variants in glutathione peroxidase 1 gene and risk of prostate cancer: a meta-analysis. Mol Biol Rep 39(9):8615–8619Google Scholar
  45. 45.
    Men T, Zhang X, Yang J, Shen B, Li X, Chen D, Wang J (2014) The rs1050450 C > T polymorphism of GPX1 is associated with the risk of bladder but not prostate cancer: evidence from a meta-analysis. Tumour Biol 35(1):269–275Google Scholar
  46. 46.
    Choi JY, Neuhouser ML, Barnett M, Hudson M, Kristal AR, Thornquist M, King IB, Goodman GE, Ambrosone CB (2007) Polymorphisms in oxidative stress-related genes are not associated with prostate cancer risk in heavy smokers. Cancer Epidemiol Biomark Prev 16(6):1115–1120Google Scholar
  47. 47.
    Abe M, Xie W, Regan MM, King IB, Stampfer MJ, Kantoff PW, Oh WK, Chan JM (2011) Single-nucleotide polymorphisms within the antioxidant defence system and associations with aggressive prostate cancer. BJU Int 107(1):126–134Google Scholar
  48. 48.
    Karunasinghe N, Han DY, Goudie M, Zhu S, Bishop K, Wang A, Duan H, Lange K, Ko S, Medhora R, Kan ST, Masters J, Ferguson LR (2012) Prostate disease risk factors among a New Zealand cohort. J Nutrigenet Nutrigenomics 5(6):339–351Google Scholar
  49. 49.
    Ekoue DN, Ansong E, Hong LK, Nonn L, Macias V, Deaton R, Rupnow R, Gann PH, Kajdacsy-Balla A, Diamond AM (2018) GPX1 localizes to the nucleus in prostate epithelium and its levels are not associated with prostate cancer recurrence. Antioxidants (Basel) 7 (11)Google Scholar
  50. 50.
    de Rosa V, Erkekoglu P, Forestier A, Favier A, Hincal F, Diamond AM, Douki T, Rachidi W (2012) Low doses of selenium specifically stimulate the repair of oxidative DNA damage in LNCaP prostate cancer cells. Free Radic Res 46(2):105–116Google Scholar
  51. 51.
    Baliga MS, Diwadkar-Navsariwala V, Koh T, Fayad R, Fantuzzi G, Diamond AM (2008) Selenoprotein deficiency enhances radiation-induced micronuclei formation. Mol Nutr Food Res 52(11):1300–1304Google Scholar
  52. 52.
    Jerome-Morais A, Bera S, Rachidi W, Gann PH, Diamond AM (2013) The effects of selenium and the GPx-1 selenoprotein on the phosphorylation of H2AX. Biochim Biophys Acta 1830(6):3399–3406Google Scholar
  53. 53.
    Schomburg L, Schweizer U (2009) Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim Biophys Acta 1790(11):1453–1462Google Scholar
  54. 54.
    Gladyshev VN, Arner ES, Berry MJ, Brigelius-Flohe R, Bruford EA, Burk RF, Carlson BA, Castellano S, Chavatte L, Conrad M, Copeland PR, Diamond AM, Driscoll DM, Ferreiro A, Flohe L, Green FR, Guigo R, Handy DE, Hatfield DL, Hesketh J, Hoffmann PR, Holmgren A, Hondal RJ, Howard MT, Huang K, Kim HY, Kim IY, Kohrle J, Krol A, Kryukov GV, Lee BJ, Lee BC, Lei XG, Liu Q, Lescure A, Lobanov AV, Loscalzo J, Maiorino M, Mariotti M, Prabhu KS, Rayman MP, Rozovsky S, Salinas G, Schmidt EE, Schomburg L, Schweizer U, Simonovic M, Sunde RA, Tsuji PA, Tweedie S, Ursini F, Whanger PD, Zhang Y (2016) Selenoprotein Gene Nomenclature. J Biol Chem 291(46):24036–24040Google Scholar
  55. 55.
    Gladyshev VN, Jeang K-T, Wootton JC, Hatfield DL (1998) A new human selenium-containing protein. Purification, characterization and cDNA sequence. J Biol Chem 273(15):8910–8915Google Scholar
  56. 56.
    Korotkov KV, Kumaraswamy E, Zhou Y, Hatfield DL, Gladyshev VN (2001) Association between the 15-kDa selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells. J Biol Chem 276(18):15330–15336Google Scholar
  57. 57.
    Labunskyy VM, Hatfield DL, Gladyshev VN (2007) The Sep15 protein family: roles in disulfide bond formation and quality control in the endoplasmic reticulum. IUBMB Life 59(1):1–5Google Scholar
  58. 58.
    Labunskyy VM, Yoo MH, Hatfield DL, Gladyshev VN (2009) Sep15, a thioredoxin-like selenoprotein, is involved in the unfolded protein response and differentially regulated by adaptive and acute ER stresses. Biochemistry 48(35):8458–8465Google Scholar
  59. 59.
    Kasaikina MV, Fomenko DE, Labunskyy VM, Lachke SA, Qiu W, Moncaster JA, Zhang J, Wojnarowicz MW Jr, Natarajan SK, Malinouski M, Schweizer U, Tsuji PA, Carlson BA, Maas RL, Lou MF, Goldstein LE, Hatfield DL, Gladyshev VN (2011) Roles of the 15-kDa selenoprotein (Sep15) in redox homeostasis and cataract development revealed by the analysis of Sep 15 knockout mice. J Biol Chem 286(38):33203–33212Google Scholar
  60. 60.
    Kumaraswamy E, Malykh A, Korotkov KV, Kozyavkin S, Hu Y, Kwon SY, Moustafa ME, Carlson BA, Berry MJ, Lee BJ, Hatfield DL, Diamond AM, Gladyshev VN (2000) Structure-expression relationships of the 15-kDa selenoprotein gene. Possible role of the protein in cancer etiology. J Biol Chem 275(45):35540–35547Google Scholar
  61. 61.
    Hu YJ, Korotkov KV, Mehta R, Hatfield DL, Rotimi CN, Luke A, Prewitt TE, Cooper RS, Stock W, Vokes EE, Dolan ME, Gladyshev VN, Diamond AM (2001) Distribution and functional consequences of nucleotide polymorphisms in the 3′-untranslated region of the human Sep15 gene. Cancer Res 61(5):2307–2310Google Scholar
  62. 62.
    Penney KL, Schumacher FR, Li H, Kraft P, Morris JS, Kurth T, Mucci LA, Hunter DJ, Kantoff PW, Stampfer MJ, Ma J (2010) A large prospective study of SEP15 genetic variation, interaction with plasma selenium levels, and prostate cancer risk and survival. Cancer Prev Res (Phila) 3(5):604–610Google Scholar
  63. 63.
    Bang J, Jang M, Huh JH, Na JW, Shim M, Carlson BA, Tobe R, Tsuji PA, Gladyshev VN, Hatfield DL, Lee BJ (2015) Deficiency of the 15-kDa selenoprotein led to cytoskeleton remodeling and non-apoptotic membrane blebbing through a RhoA/ROCK pathway. Biochem Biophys Res Commun 456(4):884–890Google Scholar
  64. 64.
    Bang J, Huh JH, Na JW, Lu Q, Carlson BA, Tobe R, Tsuji PA, Gladyshev VN, Hatfield DL, Lee BJ (2015) Cell proliferation and motility are inhibited by G1 phase arrest in 15-kDa selenoprotein-deficient Chang liver cells. Mol Cell 38(5):457–465Google Scholar
  65. 65.
    Yim SH, Everley RA, Schildberg FA, Lee SG, Orsi A, Barbati ZR, Karatepe K, Fomenko DE, Tsuji PA, Luo HR, Gygi SP, Sitia R, Sharpe AH, Hatfield DL, Gladyshev VN (2018) Role of Selenof as a gatekeeper of secreted disulfide-rich glycoproteins. Cell Rep 23(5):1387–1398Google Scholar
  66. 66.
    DeSantis CE, Siegel RL, Sauer AG, Miller KD, Fedewa SA, Alcaraz KI, Jemal A (2016) Cancer statistics for African Americans, 2016: progress and opportunities in reducing racial disparities. CA Cancer J Clin 66(4):290–308Google Scholar
  67. 67.
    Martin DN, Starks AM, Ambs S (2013) Biological determinants of health disparities in prostate cancer. Curr Opin Oncol 25(3):235–241Google Scholar
  68. 68.
    Farrell J, Petrovics G, McLeod DG, Srivastava S (2013) Genetic and molecular differences in prostate carcinogenesis between African American and Caucasian American men. Int J Mol Sci 14(8):15510–15531Google Scholar
  69. 69.
    Zeegers MP, Jellema A, Ostrer H (2003) Empiric risk of prostate carcinoma for relatives of patients with prostate carcinoma: a meta-analysis. Cancer 97(8):1894–1903Google Scholar
  70. 70.
    Geybels MS, van den Brandt PA, Schouten LJ, van Schooten FJ, van Breda SG, Rayman MP, Green FR, Verhage BA (2014) Selenoprotein gene variants, toenail selenium levels, and risk for advanced prostate cancer. J Natl Cancer Inst 106(3):dju003Google Scholar
  71. 71.
    Elhodaky M, Diamond AM (2018) Selenium-binding protein 1 in human health and disease. Int J Mol Sci 19 (11)Google Scholar
  72. 72.
    Ansong E, Ying Q, Ekoue DN, Deaton R, Hall AR, Kajdacsy-Balla A, Yang W, Gann PH, Diamond AM (2015) Evidence that selenium binding protein 1 is a tumor suppressor in prostate cancer. PLoS One 10(5):e0127295Google Scholar
  73. 73.
    Ying Q, Ansong E, Diamond AM, Lu Z, Yang W, Bie X (2015) Quantitative proteomic analysis reveals that anti-cancer effects of selenium-binding protein 1 in vivo are associated with metabolic pathways. PLoS One 10(5):e0126285Google Scholar
  74. 74.
    Pol A, Renkema GH, Tangerman A, Winkel EG, Engelke UF, de Brouwer APM, Lloyd KC, Araiza RS, van den Heuvel L, Omran H, Olbrich H, Oude Elberink M, Gilissen C, Rodenburg RJ, Sass JO, Schwab KO, Schafer H, Venselaar H, Sequeira JS, Op den Camp HJM, Wevers RA (2018) Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis. Nat Genet 50(1):120–129Google Scholar
  75. 75.
    Modis K, Panopoulos P, Coletta C, Papapetropoulos A, Szabo C (2013) Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase a. Biochem Pharmacol 86(9):1311–1319Google Scholar
  76. 76.
    Szabo C, Ransy C, Modis K, Andriamihaja M, Murghes B, Coletta C, Olah G, Yanagi K, Bouillaud F (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I Biochemical and physiological mechanisms. Br J Pharmacol 171(8):2099–2122Google Scholar
  77. 77.
    Szabo C, Coletta C, Chao C, Modis K, Szczesny B, Papapetropoulos A, Hellmich MR (2013) Tumor-derived hydrogen sulfide, produced by cystathionine-beta-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci U S A 110(30):12474–12479Google Scholar
  78. 78.
    Ansong E, Yang W, Diamond AM (2014) Molecular cross-talk between members of distinct families of selenium containing proteins. Mol Nutr Food Res 58(1):117–123Google Scholar
  79. 79.
    Huang C, Ding G, Gu C, Zhou J, Kuang M, Ji Y, He Y, Kondo T, Fan J (2012) Decreased selenium-binding protein 1 enhances glutathione peroxidase 1 activity and downregulates HIF-1alpha to promote hepatocellular carcinoma invasiveness. Clin Cancer Res 18:3042–3053Google Scholar
  80. 80.
    Fang W, Goldberg ML, Pohl NM, Bi X, Tong C, Xiong B, Koh TJ, Diamond AM, Yang W (2010) Functional and physical interaction between the selenium-binding protein 1 (SBP1) and the glutathione peroxidase 1 selenoprotein. Carcinogenesis 31(8):1360–1366Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pathology, College of Medicine, University of Illinois Cancer CenterUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations