Advertisement

Selenium and Other Elements in Wheat (Triticum aestivum) and Wheat Bread from a Seleniferous Area

  • Margarita G. Skalnaya
  • Alexey A. TinkovEmail author
  • N. Tejo Prakash
  • Olga P. Ajsuvakova
  • Sumit K. Jaiswal
  • Ranjana Prakash
  • Andrei R. Grabeklis
  • Anatoly A. Kirichuk
  • Natalia A. Zhuchenko
  • Julita Regula
  • Feng Zhang
  • Xiong Guo
  • Anatoly V. Skalny
Article
  • 1 Downloads

Abstract

The objective of the present study was to assess the levels of Se, as well as other essential and toxic trace elements in wheat grains and traditional Roti-bread from whole-grain flour in a seleniferous area of Punjab (India) using inductively-coupled plasma mass-spectrometry. Wheat grain and bread selenium levels originating from seleniferous areas exceeded the control values by a factor of more than 488 and 179, respectively. Se-rich wheat was also characterized by significantly increased Cu and Mn levels. Se-rich bread also contained significantly higher levels of Cr, Cu, I, Mn, and V. The level of Li and Sr was reduced in both Se-enriched wheat and bread samples. Roti bread from Se-enriched wheat was also characterized by elevated Al, Cd, and Ni, as well as reduced As and Hg content as compared to the respective control values. Se intake with Se-rich bread was estimated as more than 13,600% of RDA. Daily intake of Mn with both Se-unfortified and Se-fortified bread was 133% and 190% of RDA. Therefore, Se-rich bread from wheat cultivated on a seleniferous area of Punjab (India) may be considered as a potent source of selenium, although Se status should be monitored throughout dietary intervention.

Keywords

Selenium Cereals Manganese Recommended daily allowance Toxicity 

Notes

Funding

The current investigation is supported by the Russian Foundation for Basic Research within project no. 17-55-45027 and Department of Science and Technology, Government of India (INT/RUS/RFBR/P-252) “Localization of selenium and other trace elements in edible crops cultivated in seleniferous soils.”

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Kieliszek M, Błażejak S (2013) Selenium: significance, and outlook for supplementation. Nutrition 29(5):713–718.  https://doi.org/10.1016/j.nut.2012.11.012 CrossRefGoogle Scholar
  2. 2.
    Yao HD, Wu Q, Zhang ZW, Li S, Wang XL, Lei XG, Xu SW (2013) Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim Biophys Acta 1830(4):3112–3120.  https://doi.org/10.1016/j.bbagen.2013.01.007 CrossRefGoogle Scholar
  3. 3.
    Yao HD, Wu Q, Zhang ZW, Zhang JL, Li S, Huang JQ, Ren F-Z, Xu S-W, Wang X-L, Lei XG (2013) Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of Se-deficient chicks. J Nutr 143(5):613–619.  https://doi.org/10.3945/jn.112.172395 CrossRefGoogle Scholar
  4. 4.
    Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In Selinus O (ed). Essent Med Geol:375–416  https://doi.org/10.1007/978-94-007-4375-5_16
  5. 5.
    Rayman M (2017) Selenium intake and status in health & disease. Free Radic Biol Med 112:5.  https://doi.org/10.1016/j.freeradbiomed.2017.10.353 CrossRefGoogle Scholar
  6. 6.
    Jones GD, Droz B, Greve P, Gottschalk P, Poffet D, McGrath SP, Seneviratne SI, Smith P, Winkel LH (2017) Selenium deficiency risk predicted to increase under future climate change. Proc Natl Acad Sci U S A 114:2848–2853.  https://doi.org/10.1073/pnas.1611576114 CrossRefGoogle Scholar
  7. 7.
    Vinceti M, Filippini T, Rothman KJ (2018) Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Epidemiol 33(9):789–810.  https://doi.org/10.1007/s10654-018-0422-8 CrossRefGoogle Scholar
  8. 8.
    Vinceti M, Mandrioli J, Borella P, Michalke B, Tsatsakis A, Finkelstein Y (2014) Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies. Toxicol Lett 230(2):295–303.  https://doi.org/10.1016/j.toxlet.2013.11.016 CrossRefGoogle Scholar
  9. 9.
    Ötles S, Cagindi Ö (2006) Cereal based functional foods and nutraceuticals. Acta Sci Pol Technol Aliment 5:107–112Google Scholar
  10. 10.
    White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10(12):586–593.  https://doi.org/10.1016/j.tplants.2005.10.001 CrossRefGoogle Scholar
  11. 11.
    Fairweather-Tait SJ, Collings R, Hurst R (2010) Selenium bioavailability: current knowledge and future research requirements. Am J Clin Nutr 91(5):1484S–1491S.  https://doi.org/10.3945/ajcn.2010.28674J CrossRefGoogle Scholar
  12. 12.
    Filippini T, Cilloni S, Malavolti M, Violi F, Malagoli C, Tesauro M, Bottecchi I, Ferrari A, Vescovi L, Vinceti M (2018) Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a northern Italy community. JTEMB 50:508–517.  https://doi.org/10.1016/j.jtemb.2018.03.001 Google Scholar
  13. 13.
    Hart DJ, Fairweather-Tait SJ, Broadley MR, Dickinson SJ, Foot I, Knott P, McGrath SP, Mowat H, Norman K, Scott PR, Stroud JL, Tucker M, White PJ, Zhao FJ, Hurst R (2011) Selenium concentration and speciation in biofortified flour and bread: retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chem 126(4):1771–1778.  https://doi.org/10.1016/j.foodchem.2010.12.079 CrossRefGoogle Scholar
  14. 14.
    dos Reis AR, El-Ramady H, Santos EF, Gratão PL, Schomburg L (2017) Overview of selenium deficiency and toxicity worldwide: affected areas, selenium-related health issues, and case studies. In: Pilon-Smits E, Winkel L, Lin ZQ (eds) Selenium in plants. Plant Ecophysiology, p 209–230.  https://doi.org/10.1007/978-3-319-56249-0_13
  15. 15.
    Dhillon KS, Dhillon SK (2019) Genesis of seleniferous soils and associated animal and human health problems. Adv Agron 154:2–296.  https://doi.org/10.1016/bs.agron.2018.11.001 Google Scholar
  16. 16.
    Vinceti M, Filippini T, Wise LA (2018) Environmental selenium and human health: an update. Curr Environ Health Rep 5(4):464–485.  https://doi.org/10.1007/s40572-018-0213-0 CrossRefGoogle Scholar
  17. 17.
    Ducsay L, Ložek O, Varga L (2009) The influence of selenium soil application on its content in spring wheat. Plant Soil Environ 55:80–84CrossRefGoogle Scholar
  18. 18.
    Boldrin PF, Faquin V, Ramos SJ, Boldrin KVF, Ávila FW, Guilherme LRG (2013) Soil and foliar application of selenium in rice biofortification. J Food Compos Anal 31(2):238–244.  https://doi.org/10.1016/j.jfca.2013.06.002 CrossRefGoogle Scholar
  19. 19.
    Jaiswal SK, Prakash R, Acharya R, Reddy AVR, Prakash NT (2012) Selenium content in seed, oil and oil cake of Se hyperaccumulated Brassica juncea (Indian mustard) cultivated in a seleniferous region of India. Food Chem 134:401–404.  https://doi.org/10.1016/j.foodchem.2012.02.140 CrossRefGoogle Scholar
  20. 20.
    Skalnaya МG, Jaiswal SK, Prakash R, Prakash NT, Grabeklis AR, Zhegalova IV, Zhang F, Guo X, Tinkov AA, Skalny AV (2017) The effect of cultivation on seleniferous soils on the level of macroelements in cereals. Trace Elem Med 18:8–12.  https://doi.org/10.19112/2413-6174-2017-18-4-8-12 [In Russian]Google Scholar
  21. 21.
    Pazurkiewicz-Kocot K, Kita A, Pietruszka M (2008) Effect of selenium on magnesium, iron, manganese, copper, and zinc accumulation in corn treated by indole-3-acetic acid. Commun Soil Sci Plant Anal 39:2303–2318.  https://doi.org/10.1080/00103620802292343 CrossRefGoogle Scholar
  22. 22.
    Feng R, Wei C, Tu S (2013a) The roles of selenium in protecting plants against abiotic stresses. Environ Exp Bot 87:58–68.  https://doi.org/10.1016/j.envexpbot.2012.09.002 CrossRefGoogle Scholar
  23. 23.
    Wei YH, Zhang JY, Luo LG, Tu TH (2014) Simultaneous determination of Se, trace elements and major elements in Se-rich rice by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) after microwave digestion. Food Chem 159:507–511.  https://doi.org/10.1016/j.foodchem.2014.03.057 CrossRefGoogle Scholar
  24. 24.
    Tobiasz A, Walas S, Filek M, Mrowiec H, Samsel K, Sieprawska A, Hartikainen H (2014) Effect of selenium on distribution of macro-and micro-elements to different tissues during wheat ontogeny. Biol Plant 58:370–374.  https://doi.org/10.1007/s10535-014-0407-8 CrossRefGoogle Scholar
  25. 25.
    Skalny AV, Burtseva TI, Salnikova EV, Ajsuvakova OP, Skalnaya MG, Kirichuk AA, Tinkov AA (2019) Geographic variation of environmental, food, and human hair selenium content in an industrial region of Russia. Environ Res 171:293–301.  https://doi.org/10.1016/j.envres.2019.01.038 CrossRefGoogle Scholar
  26. 26.
    Lyons GH, Genc Y, Stangoulis JC, Palmer LT, Graham RD (2005) Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biol Trace Elem Res 103(2):155–168.  https://doi.org/10.1385/BTER:103:2:155 CrossRefGoogle Scholar
  27. 27.
    Cubadda F, Aureli F, Raggi A, Carcea M (2009) Effect of milling, pasta making and cooking on minerals in durum wheat. J Cereal Sci 49(1):92–97.  https://doi.org/10.1016/j.jcs.2008.07.008 CrossRefGoogle Scholar
  28. 28.
    Dhillon KS, Dhillon SK (1991) Selenium toxicity in soils, plants and animals in some parts of Punjab, India. Int J Environ Res 37:15–24.  https://doi.org/10.1080/00207239108710613 Google Scholar
  29. 29.
    Mir SA, Naik HR, Shah MA, Mir MM, Wani MH, Bhat MA (2014) Indian flat breads: a review. Food Nutr Sci 5(06):549–561.  https://doi.org/10.4236/fns.2014.56065 Google Scholar
  30. 30.
    Nardi EP, Evangelista FS, Tormen L, Saint TD, Curtius AJ, de Souza S, Barbosa F Jr (2009) The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem 112(3):727–732.  https://doi.org/10.1016/j.foodchem.2008.06.010 CrossRefGoogle Scholar
  31. 31.
    D’Ilio S, Violante N, Majorani C, Petrucci F (2011) Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and V in complex matrices: still a challenge? A review. Anal Chim Acta 698(1–2):6–13.  https://doi.org/10.1016/j.aca.2011.04.052 CrossRefGoogle Scholar
  32. 32.
    Goldhaber SB (2003) Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 38(2):232–242.  https://doi.org/10.1016/S0273-2300(02)00020-X CrossRefGoogle Scholar
  33. 33.
    World Health Organization (2010a) Exposure to arsenic: a major public health concern. Preventing Disease through Healthy Environments, Geneva https://www.who.int/ipcs/features/arsenic.pdf. Accessed March 13, 2019Google Scholar
  34. 34.
    World Health Organization (2010b) Exposure to cadmium: a major public health concern. Preventing Disease through Healthy Environments, Geneva https://www.who.int/ipcs/features/cadmium.pdf. Accessed March 13, 2019Google Scholar
  35. 35.
    World Health Organization (2007) Exposure to mercury: a major public health concern. Preventing Disease through Healthy Environments, Geneva https://www.who.int/ipcs/features/mercury.pdf. Accessed March 13, 2019Google Scholar
  36. 36.
    World Health Organization (2010c) Exposure to lead: a major public health concern. Preventing Disease through Healthy Environments, Geneva https://www.who.int/ipcs/features/lead.pdf. Accessed March 13, 2019Google Scholar
  37. 37.
    Cubadda F, Aureli A, Ciardullo S, D’Amato M, Raggi A, Acharya R, Reddy AVR, Tejo Prakash N (2010) Changes in selenium speciation associated with increasing tissue concentration of selenium in wheat grain. J Agric Food Chem 58:2295–2301.  https://doi.org/10.1021/jf903004a CrossRefGoogle Scholar
  38. 38.
    Aureli F, Ouerdane L, Bierla K, Szpunar J, Tejo Prakash N, Cubadda F (2012) Identification of selenosugars and other low-molecular weight selenium metabolites in high-selenium cereal crops. Metallomics 4:968–978.  https://doi.org/10.1039/c2mt20085f CrossRefGoogle Scholar
  39. 39.
    Skalnaya MG, Jaiswal SK, Prakash R, Prakash NT, Grabeklis AR, Zhegalova IV, Zhang F, Guo X, Tinkov AA, Skalny AV (2018) The level of toxic elements in edible crops from seleniferous area (Punjab, India). Biol Trace Elem Res 184:523–528.  https://doi.org/10.1007/s12011-017-1216-7 CrossRefGoogle Scholar
  40. 40.
    Lee S, Woodard HJ, Doolittle JJ (2011a) Selenium uptake response among selected wheat (Triticum aestivum) varieties and relationship with soil selenium fractions. Soil Sci Plant Nutr 57:823–832.  https://doi.org/10.1080/00380768.2011.641909 CrossRefGoogle Scholar
  41. 41.
    Keskinen R, Turakainen M, Hartikainen H (2010) Plant availability of soil selenate additions and selenium distribution within wheat and ryegrass. Plant Soil 333:301–313.  https://doi.org/10.1007/s11104-010-0345-y CrossRefGoogle Scholar
  42. 42.
    Lyons GH, Stangoulis JC, Graham RD (2005) Tolerance of wheat (Triticum aestivum L.) to high soil and solution selenium levels. Plant Soil 270:179–188.  https://doi.org/10.1007/s11104-004-1390-1 CrossRefGoogle Scholar
  43. 43.
    Zhao C, Ren J, Xue C, Lin E (2005) Study on the relationship between soil selenium and plant selenium uptake. Plant Soil 277:197–206.  https://doi.org/10.1007/s11104-005-7011-9 CrossRefGoogle Scholar
  44. 44.
    Eich-Greatorex S, Sogn TA, Øgaard AF, Aasen I (2007) Plant availability of inorganic and organic selenium fertiliser as influenced by soil organic matter content and pH. Nutr Cycl Agroecosyst 79:221–231.  https://doi.org/10.1007/s10705-007-9109-3 CrossRefGoogle Scholar
  45. 45.
    Lee S, Woodard HJ, Doolittle JJ (2011b) Effect of phosphate and sulfate fertilizers on selenium uptake by wheat (Triticum aestivum). Soil Sci Plant Nutr 57:696–704.  https://doi.org/10.1080/00380768.2011.623282 CrossRefGoogle Scholar
  46. 46.
    Drahoňovský J, Száková J, Mestek O, Tremlová J, Kaňa A, Najmanová J, Tlustoš P (2016) Selenium uptake, transformation and inter-element interactions by selected wildlife plant species after foliar selenate application. Environ Exp Bot 125:12–19.  https://doi.org/10.1016/j.envexpbot.2016.01.006 CrossRefGoogle Scholar
  47. 47.
    Landberg T, Greger M (1994) Influence of selenium on uptake and toxicity of copper and cadmium in pea (Pisum sativum) and wheat (Triticum aestivum). Physiol Plant 90:637–644.  https://doi.org/10.1111/j.1399-3054.1994.tb02518.x CrossRefGoogle Scholar
  48. 48.
    Zembala M, Filek M, Walas S, Mrowiec H, Kornaś A, Miszalski Z, Hartikainen H (2010) Effect of selenium on macro-and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant Soil 329:457–468.  https://doi.org/10.1007/s11104-009-0171-2 CrossRefGoogle Scholar
  49. 49.
    Yáñez Barrientes E, Rodríguez Flores C, Wrobel K, Wrobel K (2012) Impact of cadmium and selenium exposure on trace elements, fatty acids and oxidative stress in Lepidium sativum. J Mex Chem Soc 56:3–9Google Scholar
  50. 50.
    Kleiber T, Krzesiński W, Przygocka-Cyna K, Spiżewski T (2018) Alleviation effect of selenium on manganese stress of plants. Ecol Chem Eng S 25:143–152.  https://doi.org/10.1515/eces-2018-0010 Google Scholar
  51. 51.
    Hasanuzzaman M, Nahar K, Fujita M (2014) Silicon and selenium: two vital trace elements that confer abiotic stress tolerance to plants. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, London, pp 377–422.  https://doi.org/10.1016/B978-0-12-800876-8.00016-3 CrossRefGoogle Scholar
  52. 52.
    Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010) Involvement of silicon influx transporter OsNIP2; 1 in selenite uptake in rice. Plant Physiol 153:1871–1877.  https://doi.org/10.1104/pp.110.15786 CrossRefGoogle Scholar
  53. 53.
    Ghosh S, Biswas AK (2017) Selenium modulates growth and thiol metabolism in wheat (Triticum aestivum L.) during arsenic stress. Am J Plant Sci 8(03):363–389.  https://doi.org/10.4236/ajps.2017.83026 CrossRefGoogle Scholar
  54. 54.
    Chen S, Zhang C, Zhang Q, Fun M, Sun X (2009) Study on interaction between selenium and mercury in the seedling stage of winter wheat. Guizhou Agric Sci (1):28–29Google Scholar
  55. 55.
    Shanker K, Mishra S, Srivastava S, Srivastava R, Dass S, Prakash S, Srivastava MM (1996) Effect of selenite and selenate on plant uptake of cadmium by maize (Zea mays). Bull Environ Contam Toxicol 56(3):419–424.  https://doi.org/10.1007/s001289900060 CrossRefGoogle Scholar
  56. 56.
    Ertl K, Goessler W (2018) Grains, whole flour, white flour, and some final goods: an elemental comparison. Eur Food Res Technol 244(11):2065–2075.  https://doi.org/10.1007/s00217-018-3117-1 CrossRefGoogle Scholar
  57. 57.
    Teklić T, Lončarić Z, Kovačević V, Singh BR (2013) Metallic trace elements in cereal grain–a review: how much metal do we eat? Food Energy Secur 2(2):81–95.  https://doi.org/10.1002/fes3.24 CrossRefGoogle Scholar
  58. 58.
    Cardoso BR, Duarte GBS, Reis BZ, Cozzolino SM (2017) Brazil nuts: nutritional composition, health benefits and safety aspects. Food Res Int 100:9–18.  https://doi.org/10.1016/j.foodres.2017.08.036 CrossRefGoogle Scholar
  59. 59.
    Stockler-Pinto MB, Mafra D, Farage NE, Boaventura GT, Cozzolino SMF (2010) Effect of Brazil nut supplementation on the blood levels of selenium and glutathione peroxidase in hemodialysis patients. Nutrition 26(11–12):1065–1069.  https://doi.org/10.1016/j.nut.2009.08.006 CrossRefGoogle Scholar
  60. 60.
    Martens IB, Cardoso BR, Hare DJ, Niedzwiecki MM, Lajolo FM, Martens A, Cozzolino SM (2015) Selenium status in preschool children receiving a Brazil nut–enriched diet. Nutrition 31(11–12):1339–1343.  https://doi.org/10.1016/j.nut.2015.05.005 CrossRefGoogle Scholar
  61. 61.
    Vinceti M, Chawla R, Filippini T, Dutt C, Cilloni S, Loomba R, Whelton P (2019) Blood pressure levels and hypertension prevalence in a high selenium environment: results from a cross-sectional study. Nutr Metab Cardiovasc Dis 29(4):398–408.  https://doi.org/10.1016/j.numecd.2019.01.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Margarita G. Skalnaya
    • 1
    • 2
    • 3
  • Alexey A. Tinkov
    • 1
    • 2
    • 3
    Email author
  • N. Tejo Prakash
    • 4
  • Olga P. Ajsuvakova
    • 1
    • 2
    • 3
  • Sumit K. Jaiswal
    • 5
  • Ranjana Prakash
    • 4
  • Andrei R. Grabeklis
    • 1
    • 2
    • 3
  • Anatoly A. Kirichuk
    • 3
  • Natalia A. Zhuchenko
    • 2
  • Julita Regula
    • 6
  • Feng Zhang
    • 7
  • Xiong Guo
    • 7
  • Anatoly V. Skalny
    • 1
    • 2
    • 3
    • 8
  1. 1.Yaroslavl State UniversityYaroslavlRussia
  2. 2.IM Sechenov First Moscow State Medical UniversityMoscowRussia
  3. 3.Peoples’ Friendship University of Russia (RUDN University)MoscowRussia
  4. 4.Thapar Institute of Engineering and TechnologyPatialaIndia
  5. 5.Marwadi UniversityRajkotIndia
  6. 6.Poznan University of Life SciencesPoznanPoland
  7. 7.School of Public Health, Health Science CenterXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  8. 8.Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of SciencesOrenburgRussia

Personalised recommendations