Advertisement

Molecular Mechanisms by Which Selenoprotein K Regulates Immunity and Cancer

  • Michael P. Marciel
  • Peter R. HoffmannEmail author
Article

Abstract

Many of the 25 members of the selenoprotein family function as enzymes that utilize their selenocysteine (Sec) residues to catalyze redox-based reactions. However, some selenoproteins likely do not exert enzymatic activity by themselves and selenoprotein K (SELENOK) is one such selenoprotein family member that uses its Sec residue in an alternative manner. SELENOK is an endoplasmic reticulum (ER) transmembrane protein that has been shown to be important for ER stress and for calcium-dependent signaling. Molecular mechanisms for the latter have recently been elucidated using knockout mice and genetically manipulated cell lines. These studies have shown that SELENOK interacts with an enzyme in the ER membrane, DHHC6 (letters represent the amino acids aspartic acid, histidine, histidine, and cysteine in the catalytic domain), and the SELENOK/DHHC6 complex catalyzes the transfer of acyl groups such as palmitate to cysteine residues in target proteins, i.e., palmitoylation. One protein palmitoylated by SELENOK/DHHC6 is the calcium channel protein, the inositol 1,4,5-trisphosphate receptor (IP3R), which is acylated as a means for stabilizing the tetrameric calcium channel in the ER membrane. Factors that lower SELENOK levels or function impair IP3R-driven calcium flux. This role for SELENOK is important for the activation and proliferation of immune cells, and recently, a critical role for SELENOK in promoting calcium flux for the progression of melanoma has been demonstrated. This review provides a summary of these findings and their implications in terms of designing new therapeutic interventions that target SELENOK for treating cancers like melanoma.

Keywords

Palmitoylation Calcium Selenium Selenoprotein Inositol 1,4,5-trisphosphate receptor Cancer therapy 

Notes

Funding Information

This research was supported by NIAID/NIH grant R01AI089999.

References

  1. 1.
    Rayman MP (2012) Selenium and human health. Lancet 379(9822):1256–1268.  https://doi.org/10.1016/S0140-6736(11)61452-9 Google Scholar
  2. 2.
    Reeves MA, Hoffmann PR (2009) The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 66(15):2457–2478.  https://doi.org/10.1007/s00018-009-0032-4 Google Scholar
  3. 3.
    Schweizer U, Fradejas-Villar N (2016) Why 21? The significance of selenoproteins for human health revealed by inborn errors of metabolism. FASEB J 30(11):3669–3681.  https://doi.org/10.1096/fj.201600424 Google Scholar
  4. 4.
    Qi Y, Grishin NV (2005) Structural classification of thioredoxin-like fold proteins. Proteins 58(2):376–388.  https://doi.org/10.1002/prot.20329 Google Scholar
  5. 5.
    Du S, Zhou J, Jia Y, Huang K (2010) SelK is a novel ER stress-regulated protein and protects HepG2 cells from ER stress agent-induced apoptosis. Arch Biochem Biophys 502(2):137–143.  https://doi.org/10.1016/j.abb.2010.08.001 Google Scholar
  6. 6.
    Polo A, Guariniello S, Colonna G, Ciliberto G, Costantini S (2016) A study on the structural features of SELK, an over-expressed protein in hepatocellular carcinoma, by molecular dynamics simulations in a lipid-water system. Mol BioSyst 12(10):3209–3222.  https://doi.org/10.1039/c6mb00469e Google Scholar
  7. 7.
    Simister PC, Feller SM (2012) Order and disorder in large multi-site docking proteins of the Gab family--implications for signalling complex formation and inhibitor design strategies. Mol BioSyst 8(1):33–46.  https://doi.org/10.1039/c1mb05272a Google Scholar
  8. 8.
    Lee JH, Park KJ, Jang JK, Jeon YH, Ko KY, Kwon JH, Lee SR, Kim IY (2015) Selenoprotein S-dependent Selenoprotein K binding to p97(VCP) protein is essential for endoplasmic reticulum-associated degradation. J Biol Chem 290(50):29941–29952.  https://doi.org/10.1074/jbc.M115.680215 Google Scholar
  9. 9.
    Fredericks GJ, Hoffmann PR (2015) Selenoprotein K and protein palmitoylation. Antioxid Redox Signal 23(10):854–862.  https://doi.org/10.1089/ars.2015.6375 Google Scholar
  10. 10.
    Shchedrina VA, Everley RA, Zhang Y, Gygi SP, Hatfield DL, Gladyshev VN (2011) Selenoprotein K binds multiprotein complexes and is involved in the regulation of endoplasmic reticulum homeostasis. J Biol Chem 286(50):42937–42948.  https://doi.org/10.1074/jbc.M111.310920 Google Scholar
  11. 11.
    Seyedali A, Berry MJ (2014) Nonsense-mediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency. RNA 20(8):1248–1256.  https://doi.org/10.1261/rna.043463.113 Google Scholar
  12. 12.
    Lin HC, Yeh CW, Chen YF, Lee TT, Hsieh PY, Rusnac DV, Lin SY, Elledge SJ, Zheng N, Yen HS (2018) C-terminal end-directed protein elimination by CRL2 ubiquitin ligases. Mol Cell 70(4):602–613 e603.  https://doi.org/10.1016/j.molcel.2018.04.006 Google Scholar
  13. 13.
    Burk RF, Hill KE (2015) Regulation of selenium metabolism and transport. Annu Rev Nutr 35:109–134.  https://doi.org/10.1146/annurev-nutr-071714-034250 Google Scholar
  14. 14.
    Touat-Hamici Z, Bulteau AL, Bianga J, Jean-Jacques H, Szpunar J, Lobinski R, Chavatte L (2018) Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines. Biochim Biophys Acta Gen Subj 1862:2493–2505.  https://doi.org/10.1016/j.bbagen.2018.04.012 Google Scholar
  15. 15.
    Lei XG, Evenson JK, Thompson KM, Sunde RA (1995) Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J Nutr 125(6):1438–1446.  https://doi.org/10.1093/jn/125.6.1438 Google Scholar
  16. 16.
    Cao L, Zhang L, Zeng H, Wu RT, Wu TL, Cheng WH (2017) Analyses of Selenotranscriptomes and selenium concentrations in response to dietary selenium deficiency and age reveal common and distinct patterns by tissue and sex in telomere-dysfunctional mice. J Nutr 147(10):1858–1866.  https://doi.org/10.3945/jn.117.247775 Google Scholar
  17. 17.
    Verma S, Hoffmann FW, Kumar M, Huang Z, Roe K, Nguyen-Wu E, Hashimoto AS, Hoffmann PR (2011) Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J Immunol 186(4):2127–2137.  https://doi.org/10.4049/jimmunol.1002878 Google Scholar
  18. 18.
    Hoffmann PR (2012) An emerging picture of the biological roles of selenoprotein K. In: Hatfield DL, Berry MJ, Gladyshev VN (eds) Selenium: its molecular biology and role in human health, 3rd edn. Springer, New York, pp 335–344Google Scholar
  19. 19.
    Hoffmann PR, Hoge SC, Li PA, Hoffmann FW, Hashimoto AC, Berry MJ (2007) The selenoproteome exhibits widely varying, tissue-specific dependence on selenoprotein P for selenium supply. Nucleic Acids Res 35(12):3963–3973.  https://doi.org/10.1093/nar/gkm355 Google Scholar
  20. 20.
    Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419.  https://doi.org/10.1126/science.1260419 Google Scholar
  21. 21.
    Lu C, Qiu F, Zhou H, Peng Y, Hao W, Xu J, Yuan J, Wang S, Qiang B, Xu C, Peng X (2006) Identification and characterization of selenoprotein K: an antioxidant in cardiomyocytes. FEBS Lett 580(22):5189–5197.  https://doi.org/10.1016/j.febslet.2006.08.065 Google Scholar
  22. 22.
    Meplan C, Johnson IT, Polley AC, Cockell S, Bradburn DM, Commane DM, Arasaradnam RP, Mulholland F, Zupanic A, Mathers JC, Hesketh J (2016) Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies. FASEB J 30(8):2812–2825.  https://doi.org/10.1096/fj.201600251R Google Scholar
  23. 23.
    Kipp A, Banning A, van Schothorst EM, Meplan C, Schomburg L, Evelo C, Coort S, Gaj S, Keijer J, Hesketh J, Brigelius-Flohe R (2009) Four selenoproteins, protein biosynthesis, and Wnt signalling are particularly sensitive to limited selenium intake in mouse colon. Mol Nutr Food Res 53(12):1561–1572.  https://doi.org/10.1002/mnfr.200900105 Google Scholar
  24. 24.
    Kipp AP, Banning A, van Schothorst EM, Meplan C, Coort SL, Evelo CT, Keijer J, Hesketh J, Brigelius-Flohe R (2012) Marginal selenium deficiency down-regulates inflammation-related genes in splenic leukocytes of the mouse. J Nutr Biochem 23(9):1170–1177.  https://doi.org/10.1016/j.jnutbio.2011.06.011 Google Scholar
  25. 25.
    Pagmantidis V, Meplan C, van Schothorst EM, Keijer J, Hesketh JE (2008) Supplementation of healthy volunteers with nutritionally relevant amounts of selenium increases the expression of lymphocyte protein biosynthesis genes. Am J Clin Nutr 87(1):181–189.  https://doi.org/10.1093/ajcn/87.1.181 Google Scholar
  26. 26.
    Marciel MP, Khadka VS, Deng Y, Kilicaslan P, Pham A, Bertino P, Lee K, Chen S, Glibetic N, Hoffmann FW, Matter ML, Hoffmann PR (2018) Selenoprotein K deficiency inhibits melanoma by reducing calcium flux required for tumor growth and metastasis. Oncotarget 9(17):13407–13422.  https://doi.org/10.18632/oncotarget.24388 Google Scholar
  27. 27.
    Bagola K, Mehnert M, Jarosch E, Sommer T (2011) Protein dislocation from the ER. Biochim Biophys Acta 1808(3):925–936.  https://doi.org/10.1016/j.bbamem.2010.06.025 Google Scholar
  28. 28.
    Addinsall AB, Wright CR, Andrikopoulos S, van der Poel C, Stupka N (2018) Emerging roles of endoplasmic reticulum-resident selenoproteins in the regulation of cellular stress responses and the implications for metabolic disease. Biochem J 475(6):1037–1057.  https://doi.org/10.1042/BCJ20170920 Google Scholar
  29. 29.
    Huang Z, Hoffmann FW, Fay JD, Hashimoto AC, Chapagain ML, Kaufusi PH, Hoffmann PR (2012) Stimulation of unprimed macrophages with immune complexes triggers a low output of nitric oxide by calcium-dependent neuronal nitric-oxide synthase. J Biol Chem 287(7):4492–4502.  https://doi.org/10.1074/jbc.M111.315598 Google Scholar
  30. 30.
    Fredericks GJ, Hoffmann FW, Rose AH, Osterheld HJ, Hess FM, Mercier F, Hoffmann PR (2014) Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex. Proc Natl Acad Sci U S A 111(46):16478–16483.  https://doi.org/10.1073/pnas.1417176111 Google Scholar
  31. 31.
    Meiler S, Baumer Y, Huang Z, Hoffmann FW, Fredericks GJ, Rose AH, Norton RL, Hoffmann PR, Boisvert WA (2013) Selenoprotein K is required for palmitoylation of CD36 in macrophages: implications in foam cell formation and atherogenesis. J Leukoc Biol 93(5):771–780.  https://doi.org/10.1189/jlb.1212647 Google Scholar
  32. 32.
    Thorne RF, Ralston KJ, de Bock CE, Mhaidat NM, Zhang XD, Boyd AW, Burns GF (2010) Palmitoylation of CD36/FAT regulates the rate of its post-transcriptional processing in the endoplasmic reticulum. Biochim Biophys Acta 1803(11):1298–1307.  https://doi.org/10.1016/j.bbamcr.2010.07.002 Google Scholar
  33. 33.
    Rocks O, Gerauer M, Vartak N, Koch S, Huang ZP, Pechlivanis M, Kuhlmann J, Brunsveld L, Chandra A, Ellinger B, Waldmann H, Bastiaens PI (2010) The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141(3):458–471.  https://doi.org/10.1016/j.cell.2010.04.007 Google Scholar
  34. 34.
    Norton RL, Fredericks GJ, Huang Z, Fay JD, Hoffmann FW, Hoffmann PR (2017) Selenoprotein K regulation of palmitoylation and calpain cleavage of ASAP2 is required for efficient FcgammaR-mediated phagocytosis. J Leukoc Biol 101(2):439–448.  https://doi.org/10.1189/jlb.2A0316-156RR Google Scholar
  35. 35.
    Bijlmakers MJ, Marsh M (2003) The on-off story of protein palmitoylation. Trends Cell Biol 13(1):32–42Google Scholar
  36. 36.
    Jennings BC, Linder ME (2012) DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities. J Biol Chem 287(10):7236–7245.  https://doi.org/10.1074/jbc.M111.337246 Google Scholar
  37. 37.
    Mitchell DA, Mitchell G, Ling Y, Budde C, Deschenes RJ (2010) Mutational analysis of Saccharomyces cerevisiae Erf2 reveals a two-step reaction mechanism for protein palmitoylation by DHHC enzymes. J Biol Chem 285(49):38104–38114.  https://doi.org/10.1074/jbc.M110.169102 Google Scholar
  38. 38.
    Fredericks GJ, Hoffmann FW, Hondal RJ, Rozovsky S, Urschitz J, Hoffmann PR (2017) Selenoprotein K increases efficiency of DHHC6 catalyzed protein palmitoylation by stabilizing the acyl-DHHC6 intermediate. Antioxidants (Basel) 7(1).  https://doi.org/10.3390/antiox7010004
  39. 39.
    Mitchell DA, Hamel LD, Ishizuka K, Mitchell G, Schaefer LM, Deschenes RJ (2012) The Erf4 subunit of the yeast Ras palmitoyl acyltransferase is required for stability of the Acyl-Erf2 intermediate and palmitoyl transfer to a Ras2 substrate. J Biol Chem 287(41):34337–34348.  https://doi.org/10.1074/jbc.M112.379297 Google Scholar
  40. 40.
    Chen CL, Shim MS, Chung J, Yoo HS, Ha JM, Kim JY, Choi J, Zang SL, Hou X, Carlson BA, Hatfield DL, Lee BJ (2006) G-rich, a Drosophila selenoprotein, is a Golgi-resident type III membrane protein. Biochem Biophys Res Commun 348(4):1296–1301.  https://doi.org/10.1016/j.bbrc.2006.07.203 Google Scholar
  41. 41.
    Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443.  https://doi.org/10.1126/science.1083516 Google Scholar
  42. 42.
    Liu J, Zhang Z, Rozovsky S (2014) Selenoprotein K form an intermolecular diselenide bond with unusually high redox potential. FEBS Lett 588(18):3311–3321.  https://doi.org/10.1016/j.febslet.2014.07.037 Google Scholar
  43. 43.
    Huang Z, Hoffmann FW, Norton RL, Hashimoto AC, Hoffmann PR (2011) Selenoprotein K is a novel target of m-calpain, and cleavage is regulated by Toll-like receptor-induced calpastatin in macrophages. J Biol Chem 286(40):34830–34838.  https://doi.org/10.1074/jbc.M111.265520 Google Scholar
  44. 44.
    Huang Z, Rose AH, Hoffmann FW, Hashimoto AS, Bertino P, Denk T, Takano J, Iwata N, Saido TC, Hoffmann PR (2013) Calpastatin prevents NF-kappaB-mediated hyperactivation of macrophages and attenuates colitis. J Immunol 191(7):3778–3788.  https://doi.org/10.4049/jimmunol.1300972 Google Scholar
  45. 45.
    Reich HJ, Hondal RJ (2016) Why nature chose selenium. ACS Chem Biol 11(4):821–841.  https://doi.org/10.1021/acschembio.6b00031 Google Scholar
  46. 46.
    Li M, Cheng W, Nie T, Lai H, Hu X, Luo J, Li F, Li H (2018) Selenoprotein K mediates the proliferation, migration, and invasion of human choriocarcinoma cells by negatively regulating human chorionic gonadotropin expression via ERK, p38 MAPK, and Akt signaling pathway. Biol Trace Elem Res 184(1):47–59.  https://doi.org/10.1007/s12011-017-1155-3 Google Scholar
  47. 47.
    Ben SB, Peng B, Wang GC, Li C, Gu HF, Jiang H, Meng XL, Lee BJ, Chen CL (2015) Overexpression of selenoprotein SelK in BGC-823 cells inhibits cell adhesion and migration. Biochemistry (Mosc) 80(10):1344–1353.  https://doi.org/10.1134/S0006297915100168 Google Scholar
  48. 48.
    Potenza N, Castiello F, Panella M, Colonna G, Ciliberto G, Russo A, Costantini S (2016) Human MiR-544a modulates SELK expression in hepatocarcinoma cell lines. PLoS One 11(6):e0156908.  https://doi.org/10.1371/journal.pone.0156908 Google Scholar
  49. 49.
    The Cancer Genome Atlas Program, National Cancer Institute, National Institutes of Health. https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga. Accessed 31 May 2019
  50. 50.
    Villalobos C, Sobradillo D, Hernandez-Morales M, Nunez L (2016) Remodeling of calcium entry pathways in cancer. Adv Exp Med Biol 898:449–466.  https://doi.org/10.1007/978-3-319-26974-0_19 Google Scholar
  51. 51.
    Cui C, Merritt R, Fu L, Pan Z (2017) Targeting calcium signaling in cancer therapy. Acta Pharm Sin B 7(1):3–17.  https://doi.org/10.1016/j.apsb.2016.11.001 Google Scholar
  52. 52.
    Stanisz H, Vultur A, Herlyn M, Roesch A, Bogeski I (2016) The role of Orai-STIM calcium channels in melanocytes and melanoma. J Physiol 594(11):2825–2835.  https://doi.org/10.1113/JP271141 Google Scholar
  53. 53.
    Umemura M, Baljinnyam E, Feske S, De Lorenzo MS, Xie LH, Feng X, Oda K, Makino A, Fujita T, Yokoyama U, Iwatsubo M, Chen S, Goydos JS, Ishikawa Y, Iwatsubo K (2014) Store-operated Ca2+ entry (SOCE) regulates melanoma proliferation and cell migration. PLoS One 9(2):e89292.  https://doi.org/10.1371/journal.pone.0089292 Google Scholar
  54. 54.
    Yang S, Zhang JJ, Huang XY (2009) Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15(2):124–134.  https://doi.org/10.1016/j.ccr.2008.12.019 Google Scholar
  55. 55.
    Motiani RK, Hyzinski-Garcia MC, Zhang X, Henkel MM, Abdullaev IF, Kuo YH, Matrougui K, Mongin AA, Trebak M (2013) STIM1 and Orai1 mediate CRAC channel activity and are essential for human glioblastoma invasion. Pflugers Arch 465(9):1249–1260.  https://doi.org/10.1007/s00424-013-1254-8 Google Scholar
  56. 56.
    Trenevska I, Li D, Banham AH (2017) Therapeutic antibodies against intracellular tumor antigens. Front Immunol 8:1001.  https://doi.org/10.3389/fimmu.2017.01001 Google Scholar
  57. 57.
    Gonzalez-Sapienza G, Rossotti MA, Tabares-da Rosa S (2017) Single-domain antibodies as versatile affinity reagents for analytical and diagnostic applications. Front Immunol 8:977.  https://doi.org/10.3389/fimmu.2017.00977 Google Scholar
  58. 58.
    Lauwereys M, Arbabi Ghahroudi M, Desmyter A, Kinne J, Holzer W, De Genst E, Wyns L, Muyldermans S (1998) Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J 17(13):3512–3520.  https://doi.org/10.1093/emboj/17.13.3512 Google Scholar
  59. 59.
    Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A (1991) Antennapedia homeobox peptide regulates neural morphogenesis. Proc Natl Acad Sci U S A 88(5):1864–1868Google Scholar
  60. 60.
    Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55(6):1189–1193Google Scholar
  61. 61.
    Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55(6):1179–1188Google Scholar
  62. 62.
    Glab-Ampai K, Malik AA, Chulanetra M, Thanongsaksrikul J, Thueng-In K, Srimanote P, Tongtawe P, Chaicumpa W (2016) Inhibition of HCV replication by humanized-single domain transbodies to NS4B. Biochem Biophys Res Commun 476(4):654–664.  https://doi.org/10.1016/j.bbrc.2016.05.109 Google Scholar
  63. 63.
    Phalaphol A, Thueng-In K, Thanongsaksrikul J, Poungpair O, Bangphoomi K, Sookrung N, Srimanote P, Chaicumpa W (2013) Humanized-VH/VHH that inhibit HCV replication by interfering with the virus helicase activity. J Virol Methods 194(1–2):289–299.  https://doi.org/10.1016/j.jviromet.2013.08.032 Google Scholar
  64. 64.
    Thueng-in K, Thanongsaksrikul J, Srimanote P, Bangphoomi K, Poungpair O, Maneewatch S, Choowongkomon K, Chaicumpa W (2012) Cell penetrable humanized-VH/V(H)H that inhibit RNA dependent RNA polymerase (NS5B) of HCV. PLoS One 7(11):e49254.  https://doi.org/10.1371/journal.pone.0049254 Google Scholar
  65. 65.
    Dobrev VS, Fred LM, Gerhart KP, Metallo SJ (2018) Characterization of the binding of small molecules to intrinsically disordered proteins. Methods Enzymol 611:677–702.  https://doi.org/10.1016/bs.mie.2018.09.033 Google Scholar
  66. 66.
    Zhang Z, Liu J, Rozovsky S (2018) Preparation of selenocysteine-containing forms of human SELENOK and SELENOS. Methods Mol Biol 1661:241–263.  https://doi.org/10.1007/978-1-4939-7258-6_18 Google Scholar
  67. 67.
    Pawson T (1995) Protein modules and signalling networks. Nature 373(6515):573–580.  https://doi.org/10.1038/373573a0 Google Scholar
  68. 68.
    Cohen GB, Ren R, Baltimore D (1995) Modular binding domains in signal transduction proteins. Cell 80(2):237–248Google Scholar
  69. 69.
    Nguyen JT, Porter M, Amoui M, Miller WT, Zuckermann RN, Lim WA (2000) Improving SH3 domain ligand selectivity using a non-natural scaffold. Chem Biol 7(7):463–473Google Scholar
  70. 70.
    Pisabarro MT, Serrano L (1996) Rational design of specific high-affinity peptide ligands for the Abl-SH3 domain. Biochemistry 35(33):10634–10640.  https://doi.org/10.1021/bi960203t Google Scholar
  71. 71.
    Feng S, Kapoor TM, Shirai F, Combs AP, Schreiber SL (1996) Molecular basis for the binding of SH3 ligands with non-peptide elements identified by combinatorial synthesis. Chem Biol 3(8):661–670Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Cell and Molecular Biology, John A. Burns School of MedicineUniversity of HawaiiHonoluluUSA

Personalised recommendations