Advertisement

Dietary Selenium Supplementation Does Not Attenuate Mammary Tumorigenesis-Mediated Bone Loss in Male MMTV-PyMT Mice

  • Lin YanEmail author
  • Forrest H. Nielsen
  • Sneha Sundaram
  • Jay Cao
Article

Abstract

Bone wasting occurs during the progression of breast cancer and contributes to breast cancer mortality. We evaluated the effect of methylseleninic acid (MSeA), an anti-carcinogenic form of selenium, on bone microstructural changes in the presence of mammary tumors in a male breast cancer model of mouse mammary tumor virus–polyomavirus middle T-antigen (MMTV-PyMT). In this study, we performed microcomputed tomographic analysis of femurs and vertebrae collected from a study showing that dietary supplementation with MSeA reduces mammary tumorigenesis in male mice. Compared to age-matched, non-tumor-bearing mice (MMTV-PyMT negative), the presence of mammary tumors significantly reduced the bone volume fraction, trabecular thickness, and bone mineral density while it increased the structure model index in femurs, but not in vertebrae. Moreover, mammary tumorigenesis decreased plasma concentrations of osteocalcin. Supplementation with MSeA did not affect these changes in MMTV-PyMT mice. In conclusion, mammary tumorigenesis caused bone loss in MMTV-PyMT mice. However, dietary supplementation with MSeA did not attenuate mammary tumor-associated bone loss in this model of male breast cancer.

Keywords

Selenium Mammary tumor Bone loss MMTV-PyMT Male Mice 

Notes

Acknowledgments

The authors gratefully acknowledge the assistance of the following staff of the Grand Forks Human Nutrition Research Center: Lana DeMars, Kay Keehr, and Kim Michelsen for technical support, James Lindlauf for preparing experimental diets, and vivarium staff for providing high-quality animal care.

Funding Information

Funding for this work was provided by the USDA, ARS, Research Project 3062-51000-050-00D.

Compliance with Ethical Standards

This study was conducted in accordance with the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (Institute for Laboratory Animal Research (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington, D.C.  https://doi.org/10.17226/12910) and approved by the Institutional Animal Care and Use Committee of the Grand Forks Human Nutrition Research Center.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Jung SY, Rosenzweig M, Sereika SM, Linkov F, Brufsky A, Weissfeld JL (2012) Factors associated with mortality after breast cancer metastasis. Cancer Causes Control 23(1):103–112.  https://doi.org/10.1007/s10552-011-9859-8 Google Scholar
  2. 2.
    Manders K, van de Poll-Franse LV, Creemers GJ, Vreugdenhil G, van der Sangen MJ, Nieuwenhuijzen GA, Roumen RM, Voogd AC (2006) Clinical management of women with metastatic breast cancer: a descriptive study according to age group. BMC Cancer 6:179.  https://doi.org/10.1186/1471-2407-6-179 Google Scholar
  3. 3.
    Kandarian S (2008) The molecular basis of skeletal muscle atrophy--parallels with osteoporotic signaling. J Musculoskelet Neuronal Interact 8(4):340–341Google Scholar
  4. 4.
    Preston T, Fearon KCH, Robertson I, East BW, Calman KC (1987) Tissue loss during severe wasting in lung cancer patients. In: Ellis KJ, Yasumura S, Morgan WD (eds) In vivo body composition studies. Institute Of Physical Sciences in Medicine, London, pp 60–69Google Scholar
  5. 5.
    Choi E, Carruthers K, Zhang L, Thomas N, Battaglino RA, Morse LR, Widrick JJ (2013) Concurrent muscle and bone deterioration in a murine model of cancer cachexia. Phys Rep 1(6):e00144.  https://doi.org/10.1002/phy2.144 Google Scholar
  6. 6.
    Vinceti M, Dennert G, Crespi CM, Zwahlen M, Brinkman M, Zeegers MP, Horneber M, D'Amico R, Del Giovane C (2014) Selenium for preventing cancer. Cochrane Database Syst Rev 1(3):CD005195.  https://doi.org/10.1002/14651858.CD005195.pub3 Google Scholar
  7. 7.
    Lockwood K, Moesgaard S, Hanioka T, Folkers K (1994) Apparent partial remission of breast cancer in ‘high risk’ patients supplemented with nutritional antioxidants, essential fatty acids and coenzyme Q10. Mol Asp Med 15(Suppl):S231–S240Google Scholar
  8. 8.
    Meyer F, Galan P, Douville P, Bairati I, Kegle P, Bertrais S, Estaquio C, Hercberg S (2005) Antioxidant vitamin and mineral supplementation and prostate cancer prevention in the SU.VI.MAX trial. Int J Cancer 116(2):182–186.  https://doi.org/10.1002/ijc.21058 Google Scholar
  9. 9.
    Qiao YL, Dawsey SM, Kamangar F, Fan JH, Abnet CC, Sun XD, Johnson LL, Gail MH, Dong ZW, Yu B, Mark SD, Taylor PR (2009) Total and cancer mortality after supplementation with vitamins and minerals: follow-up of the Linxian General Population Nutrition Intervention Trial. J Natl Cancer Inst 101(7):507–518.  https://doi.org/10.1093/jnci/djp037 Google Scholar
  10. 10.
    Ip C, Thompson HJ, Zhu Z, Ganther HE (2000) In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res 60(11):2882–2886Google Scholar
  11. 11.
    Qi Y, Fu X, Xiong Z, Zhang H, Hill SM, Rowan BG, Dong Y (2012) Methylseleninic acid enhances paclitaxel efficacy for the treatment of triple-negative breast cancer. PLoS One 7(2):e31539.  https://doi.org/10.1371/journal.pone.0031539 Google Scholar
  12. 12.
    Sundaram S, Yan L (2018) Dietary supplementation with methylseleninic acid inhibits mammary tumorigenesis and metastasis in male MMTV-PyMT mice. Biol Trace Elem Res 184(1):186–195.  https://doi.org/10.1007/s12011-017-1188-7 Google Scholar
  13. 13.
    Molanouri Shamsi M, Chekachak S, Soudi S, Quinn LS, Ranjbar K, Chenari J, Yazdi MH, Mahdavi M (2017) Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-alpha ratio in skeletal muscle of 4T1 breast cancer mice with cachexia. Cytokine 90:100–108.  https://doi.org/10.1016/j.cyto.2016.11.005 Google Scholar
  14. 14.
    Wang H, Li TL, Hsia S, Su IL, Chan YL, Wu CJ (2015) Skeletal muscle atrophy is attenuated in tumor-bearing mice under chemotherapy by treatment with fish oil and selenium. Oncotarget 6(10):7758–7773.  https://doi.org/10.18632/oncotarget.3483 Google Scholar
  15. 15.
    Wang H, Chan YL, Li TL, Bauer BA, Hsia S, Wang CH, Huang JS, Wang HM, Yeh KY, Huang TH, Wu GJ, Wu CJ (2013) Reduction of splenic immunosuppressive cells and enhancement of anti-tumor immunity by synergy of fish oil and selenium yeast. PLoS One 8(1):e52912.  https://doi.org/10.1371/journal.pone.0052912 Google Scholar
  16. 16.
    Guy CT, Cardiff RD, Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12(3):954–961.  https://doi.org/10.1128/MCB.12.3.954 Google Scholar
  17. 17.
    Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, Pollard JW (2003) Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163(5):2113–2126.  https://doi.org/10.1016/S0002-9440(10)63568-7 Google Scholar
  18. 18.
    Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S, Chandrasekharan S, Backlund MG, Yin Y, Khramtsov AI, Bastein R, Quackenbush J, Glazer RI, Brown PH, Green JE, Kopelovich L, Furth PA, Palazzo JP, Olopade OI, Bernard PS, Churchill GA, Van Dyke T, Perou CM (2007) Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8(5):R76.  https://doi.org/10.1186/gb-2007-8-5-r76 Google Scholar
  19. 19.
    Maglione JE, Moghanaki D, Young LJ, Manner CK, Ellies LG, Joseph SO, Nicholson B, Cardiff RD, MacLeod CL (2001) Transgenic Polyoma middle-T mice model premalignant mammary disease. Cancer Res 61(22):8298–8305Google Scholar
  20. 20.
    Sundaram S, Yan L (2016) High-fat diet enhances mammary tumorigenesis and pulmonary metastasis and alters inflammatory and angiogenic profiles in MMTV-PyMT mice. Anticancer Res 36(12):6279–6287.  https://doi.org/10.21873/anticanres.11223 Google Scholar
  21. 21.
    Sundaram S, Yan L (2018) Time-restricted feeding mitigates high-fat diet-enhanced mammary tumorigenesis in MMTV-PyMT mice. Nutr Res 59:72–79.  https://doi.org/10.1016/j.nutres.2018.07.014 Google Scholar
  22. 22.
    White J, Kearins O, Dodwell D, Horgan K, Hanby AM, Speirs V (2011) Male breast carcinoma: increased awareness needed. Breast Cancer Res 13(5):219.  https://doi.org/10.1186/bcr2930 Google Scholar
  23. 23.
    Ge Y, Sneige N, Eltorky MA, Wang Z, Lin E, Gong Y, Guo M (2009) Immunohistochemical characterization of subtypes of male breast carcinoma. Breast Cancer Res 11(3):R28.  https://doi.org/10.1186/bcr2258 Google Scholar
  24. 24.
    Shaaban AM, Ball GR, Brannan RA, Cserni G, Di Benedetto A, Dent J, Fulford L, Honarpisheh H, Jordan L, Jones JL, Kanthan R, Maraqa L, Litwiniuk M, Mottolese M, Pollock S, Provenzano E, Quinlan PR, Reall G, Shousha S, Stephens M, Verghese ET, Walker RA, Hanby AM, Speirs V (2012) A comparative biomarker study of 514 matched cases of male and female breast cancer reveals gender-specific biological differences. Breast Cancer Res Treat 133(3):949–958.  https://doi.org/10.1007/s10549-011-1856-9 Google Scholar
  25. 25.
    Pemmaraju N, Munsell MF, Hortobagyi GN, Giordano SH (2012) Retrospective review of male breast cancer patients: analysis of tamoxifen-related side-effects. Ann Oncol 23(6):1471–1474.  https://doi.org/10.1093/annonc/mdr459 Google Scholar
  26. 26.
    Reeves PG, Nielsen FH, Fahey GCJ (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN-76A rodent diet. J Nutr 123(11):1939–1951.  https://doi.org/10.1093/jn/123.11.1939 Google Scholar
  27. 27.
    Yan L, Nielsen FH, Sundaram S, Cao J (2017) Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma. Oncotarget. 8:23303–23311.  https://doi.org/10.18632/oncotarget.15055 Google Scholar
  28. 28.
    Yan L, Nielsen FH, Sundaram S, Cao J (2015) High-fat diet enhances and plasminogen activator inhibitor-1 deficiency attenuates bone loss in mice with Lewis lung carcinoma. Anticancer Res 35(7):3839–3847Google Scholar
  29. 29.
    Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–1486.  https://doi.org/10.1002/jbmr.141 Google Scholar
  30. 30.
    Weinreb M, Shinar D, Rodan GA (1990) Different pattern of alkaline phosphatase, osteopontin, and osteocalcin expression in developing rat bone visualized by in situ hybridization. J Bone Miner Res 5(8):831–842.  https://doi.org/10.1002/jbmr.5650050806 Google Scholar
  31. 31.
    Kirstein B, Chambers TJ, Fuller K (2006) Secretion of tartrate-resistant acid phosphatase by osteoclasts correlates with resorptive behavior. J Cell Biochem 98(5):1085–1094.  https://doi.org/10.1002/jcb.20835 Google Scholar
  32. 32.
    Perez EA, Weilbaecher K (2006) Aromatase inhibitors and bone loss. Oncology (Williston Park) 20(9):1029–1039 discussion 1039-1040, 1042, 1048Google Scholar
  33. 33.
    Chetrite GS, Cortes-Prieto J, Philippe JC, Wright F, Pasqualini JR (2000) Comparison of estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, human breast tissues. J Steroid Biochem Mol Biol 72(1–2):23–27.  https://doi.org/10.1016/j.jsbmb.2007.03.030 Google Scholar
  34. 34.
    Brinton LA, Key TJ, Kolonel LN, Michels KB, Sesso HD, Ursin G, Van Den Eeden SK, Wood SN, Falk RT, Parisi D, Guillemette C, Caron P, Turcotte V, Habel LA, Isaacs CJ, Riboli E, Weiderpass E, Cook MB (2015) Prediagnostic sex steroid hormones in relation to male breast cancer risk. J Clin Oncol 33(18):2041–2050.  https://doi.org/10.1200/JCO.2014.59.1602 Google Scholar
  35. 35.
    Doyen J, Italiano A, Largillier R, Ferrero JM, Fontana X, Thyss A (2010) Aromatase inhibition in male breast cancer patients: biological and clinical implications. Ann Oncol 21(6):1243–1245.  https://doi.org/10.1093/annonc/mdp450 Google Scholar
  36. 36.
    Kuba S, Ishida M, Oikawa M, Nakamura Y, Yamanouchi K, Tokunaga E, Taguchi K, Esaki T, Eguchi S, Ohno S (2016) Aromatase inhibitors with or without luteinizing hormone-releasing hormone agonist for metastatic male breast cancer: report of four cases and review of the literature. Breast Cancer 23(6):945–949.  https://doi.org/10.1007/s12282-016-0679-2 Google Scholar
  37. 37.
    Giordano SH, Perkins GH, Broglio K, Garcia SG, Middleton LP, Buzdar AU, Hortobagyi GN (2005) Adjuvant systemic therapy for male breast carcinoma. Cancer 104(11):2359–2364.  https://doi.org/10.1002/cncr.21526 Google Scholar
  38. 38.
    Maxwell C, Viale PH (2005) Cancer treatment-induced bone loss in patients with breast or prostate cancer. Oncol Nurs Forum 32(3):589–603.  https://doi.org/10.1188/04.ONF.589-603 Google Scholar
  39. 39.
    Lebrecht A, Grimm C, Lantzsch T, Ludwig E, Hefler L, Ulbrich E, Koelbl H (2004) Monocyte chemoattractant protein-1 serum levels in patients with breast cancer. Tumour Biol 25(1–2):14–17.  https://doi.org/10.1159/000077718 Google Scholar
  40. 40.
    Janicke F, Schmitt M, Pache L, Ulm K, Harbeck N, Hofler H, Graeff H (1993) Urokinase (uPA) and its inhibitor PAI-1 are strong and independent prognostic factors in node-negative breast cancer. Breast Cancer Res Treat 24(3):195–208.  https://doi.org/10.1007/BF01833260 Google Scholar
  41. 41.
    Nam JS, Kang MJ, Suchar AM, Shimamura T, Kohn EA, Michalowska AM, Jordan VC, Hirohashi S, Wakefield LM (2006) Chemokine (C-C motif) ligand 2 mediates the prometastatic effect of dysadherin in human breast cancer cells. Cancer Res 66(14):7176–7184.  https://doi.org/10.1158/0008-5472.CAN-06-0825 Google Scholar
  42. 42.
    Almholt K, Nielsen BS, Frandsen TL, Brunner N, Dano K, Johnsen M (2003) Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice. Oncogene 22(28):4389–4397.  https://doi.org/10.1038/sj.onc.1206601 Google Scholar
  43. 43.
    Hopwood B, Tsykin A, Findlay DM, Fazzalari NL (2009) Gene expression profile of the bone microenvironment in human fragility fracture bone. Bone 44(1):87–101.  https://doi.org/10.1016/j.bone.2008.08.120 Google Scholar
  44. 44.
    Lu Y, Cai Z, Xiao G, Keller ET, Mizokami A, Yao Z, Roodman GD, Zhang J (2007) Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption. Cancer Res 67(8):3646–3653.  https://doi.org/10.1158/0008-5472.CAN-06-1210 Google Scholar
  45. 45.
    Daci E, Udagawa N, Martin TJ, Bouillon R, Carmeliet G (1999) The role of the plasminogen system in bone resorption in vitro. J Bone Miner Metab 14(6):946–952.  https://doi.org/10.1359/jbmr.1999.14.6.946 Google Scholar
  46. 46.
    Daci E, Verstuyf A, Moermans K, Bouillon R, Carmeliet G (2000) Mice lacking the plasminogen activator inhibitor 1 are protected from trabecular bone loss induced by estrogen deficiency. J Bone Miner Res 15(8):1510–1516.  https://doi.org/10.1359/jbmr.2000.15.8.1510 Google Scholar
  47. 47.
    Suzuki KT, Kurasaki K, Ogawa S, Suzuki N (2006) Metabolic transformation of methylseleninic acid through key selenium intermediate selenide. Toxicol Appl Pharmacol 215(2):189–197.  https://doi.org/10.1016/j.taap.2006.02.011 Google Scholar
  48. 48.
    Ip C, Ganther HE (1990) Activity of methylated forms of selenium in cancer prevention. Cancer Res 50(4):1206–1211Google Scholar
  49. 49.
    Ip C, Hayes C, Budnick RM, Ganther HE (1991) Chemical form of selenium, critical metabolites, and cancer prevention. Cancer Res 51(2):595–600Google Scholar
  50. 50.
    Yan L, DeMars LC (2012) Dietary supplementation with methylseleninic acid, but not selenomethionine, reduces spontaneous metastasis of Lewis lung carcinoma in mice. Int J Cancer 131(6):1260–1266.  https://doi.org/10.1002/ijc.27355 Google Scholar
  51. 51.
    Ebert R, Ulmer M, Zeck S, Meissner-Weigl J, Schneider D, Stopper H, Schupp N, Kassem M, Jakob F (2006) Selenium supplementation restores the antioxidative capacity and prevents cell damage in bone marrow stromal cells in vitro. Stem Cells 24(5):1226–1235.  https://doi.org/10.1634/stemcells.2005-0117 Google Scholar
  52. 52.
    Jakob F, Becker K, Paar E, Ebert-Duemig R, Schutze N (2002) Expression and regulation of thioredoxin reductases and other selenoproteins in bone. Methods Enzymol 347:168–179Google Scholar

Copyright information

© This is a U.S. Government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2019

Authors and Affiliations

  1. 1.U.S. Department of Agriculture, Agricultural Research ServiceGrand Forks Human Nutrition Research CenterGrand ForksUSA

Personalised recommendations