Preconcentration of Lead in Blood and Urine Samples Among Bladder Cancer Patients Using Mesoporous Strontium Titanate Nanoparticles

  • Wael I. MortadaEmail author
  • Amr M. Abdelghany


In this work, mesoporous strontium titanate nanoparticles (SrTiO3 NPs) were synthesized through a single-step combustion process and were characterized by FT-IR, XRD, SEM-EDX, and TEM. The effects of main parameters that may influence the extraction process (i.e., pH, sorbent amount, time of extraction, eluting agent, and the presence concomitant ions) were investigated. The optimum extraction was achieved at pH 6, 50 mg of sorbent, 20-min shaking time, and 4.0 mL of 0.1 mol L−1 thiourea as desorption agent. Under these conditions, the maximum adsorption capacity was 155.6 mg g−1 with a preconcentration factor of 250 (for a 1000 mL sample solution). The calibration graph was linear up to 1000 μg L−1 and the limit of detection was 1.75 μg L−1. The precision (as relative standard deviation) was 2.53% (n = 10). The procedure was employed for the preconcentration of Pb2+ from blood and urine samples of bladder cancer patients before its determination by FAAS.


Strontium titanate nanoparticles Preconcentration Lead Flame atomic absorption spectrometry Bladder cancer patients 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Liu J, Goyer RA, Waalkes MP (2008) Toxic effects of metals. In: Klaassen CD (ed) Casarett and Doull’s toxicology, the basic science of poisons, 7th edn. McGraw-Hill, New York, pp 931–979Google Scholar
  2. 2.
    da Silva PAB, de Souza GC, da S. Leotério DM, Belian MF, Silva WE, Paim AP, Lavorante AF (2015) Synthesis and characterization of functionalized silica with 3, 6-ditia-1, 8-octanediol for the preconcentration and determination of lead in milk employing multicommuted flow system coupled to FAAS. J Food Compos Anal 40:177–184CrossRefGoogle Scholar
  3. 3.
    Chen J, Xiao S, Wu X, Fang K, Liu W (2005) Determination of lead in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction. Talanta 67(5):992–996CrossRefGoogle Scholar
  4. 4.
    dos Santos ÉJ, Herrmann AB, Prado SK, Fantin EB, dos Santos VW, de Oliveira AVM, Curtius AJ (2013) Determination of toxic elements in glass beads used for pavement marking by ICP OES. Microchem J 108:233–238CrossRefGoogle Scholar
  5. 5.
    Cao Y, Deng B, Yan L, Huang H (2017) An environmentally-friendly, highly efficient, gas pressure-assisted sample introduction system for ICP-MS and its application to detection of cadmium and lead in human plasma. Talanta 167:520–525CrossRefGoogle Scholar
  6. 6.
    das Graças AKM, de Andrade JB, de Jesus DS, Lemos VA, Bandeira ML, dos Santos WN, Bezerra MA, Amorim FA, Souza AS, Ferreira SL (2006) Separation and preconcentration procedures for the determination of lead using spectrometric techniques: a review. Talanta 69(1):16–24CrossRefGoogle Scholar
  7. 7.
    Visser AE, Swatloski RP, Griffin ST, Hartman DH, Rogers RD (2001) Liquid/liquid extraction of metal ions in room temperature ionic liquids. Sep Sci Technol 36(5–6):785–804CrossRefGoogle Scholar
  8. 8.
    Gouda AA (2016) A new coprecipitation method without carrier element for separation and preconcentration of some metal ions at trace levels in water and food samples. Talanta 146:435–441CrossRefGoogle Scholar
  9. 9.
    Mortada W, Kenawy I, Abdel-Rhman M, El-Gamal G, Moalla S (2017) A new thiourea derivative [2-(3-ethylthioureido) benzoic acid] for cloud point extraction of some trace metals in water, biological and food samples. J Trace Elem Med Biol 44:266–273CrossRefGoogle Scholar
  10. 10.
    Mortada W, Kenawy I, El-Reash YA, Mousa A (2017) Microwave assisted modification of cellulose by gallic acid and its application for removal of aluminium from real samples. Int J Biol Macromol 101:490–501CrossRefGoogle Scholar
  11. 11.
    Hu B, He M, Chen B (2015) Nanometer-sized materials for solid-phase extraction of trace elements. Anal Bioanal Chem 407(10):2685–2710CrossRefGoogle Scholar
  12. 12.
    Feist B (2016) Selective dispersive micro solid-phase extraction using oxidized multiwalled carbon nanotubes modified with 1, 10-phenanthroline for preconcentration of lead ions. Food Chem 209:37–42CrossRefGoogle Scholar
  13. 13.
    Jiang H-m, Yang T, Wang Y-h, Lian H-z, Hu X (2013) Magnetic solid-phase extraction combined with graphite furnace atomic absorption spectrometry for speciation of Cr (III) and Cr (VI) in environmental waters. Talanta 116:361–367CrossRefGoogle Scholar
  14. 14.
    Shirkhanloo H, Khaligh A, Mousavi HZ, Rashidi A (2016) Ultrasound assisted-dispersive-micro-solid phase extraction based on bulky amino bimodal mesoporous silica nanoparticles for speciation of trace manganese (II)/(VII) ions in water samples. Microchem J 124:637–645CrossRefGoogle Scholar
  15. 15.
    Bicim T, Yaman M (2016) Sensitive determination of uranium in natural waters using UV-Vis spectrometry after preconcentration by ion-imprinted polymer-ternary complexes. J AOAC Int 99(4):1043–1048CrossRefGoogle Scholar
  16. 16.
    Limchoowong N, Sricharoen P, Areerob Y, Nuengmatcha P, Sripakdee T, Techawongstien S, Chanthai S (2017) Preconcentration and trace determination of copper (II) in Thai food recipes using Fe3O4 @ Chi–GQDs nanocomposites as a new magnetic adsorbent. Food Chem 230:388–397CrossRefGoogle Scholar
  17. 17.
    Mortada W, Moustafa A, Ismail A, Hassanien M, Aboud A (2015) Microwave assisted decoration of titanium oxide nanotubes with CuFe2O4 quantum dots for solid phase extraction of uranium. RSC Adv 5(77):62414–62423CrossRefGoogle Scholar
  18. 18.
    Yavuz E, Tokalıoğlu Ş, Şahan H, Patat Ş (2014) Nano sponge Mn2O3 as a new adsorbent for the preconcentration of Pd (II) and Rh (III) ions in sea water, wastewater, rock, street sediment and catalytic converter samples prior to FAAS determinations. Talanta 128:31–37CrossRefGoogle Scholar
  19. 19.
    Ghaedi M, Niknam K, Shokrollahi A, Niknam E, Rajabi HR, Soylak M (2008) Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina. J Hazard Mater 155(1):121–127CrossRefGoogle Scholar
  20. 20.
    Pena M, Fierro J (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101(7):1981–2018CrossRefGoogle Scholar
  21. 21.
    Tsumura T, Sogabe K, Toyoda M (2009) Preparation of SrTiO3-supported TiO2 photocatalyst. Mater Sci Eng B 157(1):113–115CrossRefGoogle Scholar
  22. 22.
    Johnson DC, Prieto AL (2011) Use of strontium titanate (SrTiO3) as an anode material for lithium-ion batteries. J Power Sources 196(18):7736–7741CrossRefGoogle Scholar
  23. 23.
    Thongnopkun P, Ekgasit S (2005) FTIR spectra of faceted diamonds and diamond simulants. Diam Relat Mater 14(10):1592–1599CrossRefGoogle Scholar
  24. 24.
    Khajepour A, Rahmani F (2017) An approach to design a 90 Sr radioisotope thermoelectric generator using analytical and Monte Carlo methods with ANSYS, COMSOL, and MCNP. Appl Radiat Isot 119:51–59CrossRefGoogle Scholar
  25. 25.
    Shiyong L, Jiayun Z (2007) Kinetics of strontium titanate formation from solid state reaction between strontium carbonate and anatase. High Temp Mater Processes 26(1):33–42CrossRefGoogle Scholar
  26. 26.
    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380CrossRefGoogle Scholar
  27. 27.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319CrossRefGoogle Scholar
  28. 28.
    Kenawy I, El-Reash YA, Hassanien M, Alnagar N, Mortada W (2018) Use of microwave irradiation for modification of mesoporous silica nanoparticles by thioglycolic acid for removal of cadmium and mercury. Microporous Mesoporous Mater 258:217–227CrossRefGoogle Scholar
  29. 29.
    Monsef Khoshhesab Z, Najafi N (2017) Magnetic solid-phase extraction to preconcentrate trace amounts of gold (III) using nickel ferrite magnetic nanoparticles. Int J Environ Anal Chem 97(13): 1–16Google Scholar
  30. 30.
    Afkhami A, Saber-Tehrani M, Bagheri H (2010) Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2,4-dinitrophenylhydrazine. J Hazard Mater 181(1–3):836–844CrossRefGoogle Scholar
  31. 31.
    Soylak M, Acar D, Yilmaz E, El-Khodary SA, Morsy M, Ibrahim M (2017) Magnetic graphene oxide as an efficient adsorbent for the separation and preconcentration of Cu (II), Pb (II), and Cd (II) from environmental samples. J AOAC Int 100(5):1544–1550CrossRefGoogle Scholar
  32. 32.
    Jin Z, Gao H, Hu L (2015) Removal of Pb (II) by nano-titanium oxide investigated by batch, XPS and model techniques. RSC Adv 5(107):88520–88528CrossRefGoogle Scholar
  33. 33.
    Kenawy IM, Mortada WI, Abou El-Reash YG, Hawwas AH (2015) New modified cellulose nanoparticles for solid-phase extraction of some metal ions in biological and water samples. Can J Chem 94(3):221–228CrossRefGoogle Scholar
  34. 34.
    Ren Y, Abbood HA, He F, Peng H, Huang K (2013) Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem Eng J 226:300–311CrossRefGoogle Scholar
  35. 35.
    Dąbrowski A (2001) Adsorption—from theory to practice. Adv Colloid Interf Sci 93(1–3):135–224CrossRefGoogle Scholar
  36. 36.
    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403CrossRefGoogle Scholar
  37. 37.
    Mckay G, Blair H, Gardner J (1982) Adsorption of dyes on chitin. I Equilibrium studies. J Appl Polym Sci 27(8):3043–3057CrossRefGoogle Scholar
  38. 38.
    León M, Flores-Alamo N, Solache-Ríos MJ, Rosa-Gómez I, Díaz-Campos G (2017) Lead and copper adsorption behaviour by Lemna gibba: kinetic and equilibrium studies. CLEAN–Soil Air Water 45(8): 1600357Google Scholar
  39. 39.
    Wadhwa SK, Tuzen M, Kazi TG, Soylak M, Hazer B (2014) Polyhydroxybutyrate-b-polyethyleneglycol block copolymer for the solid phase extraction of lead and copper in water, baby foods, tea and coffee samples. Food Chem 152:75–80CrossRefGoogle Scholar
  40. 40.
    Ghaedi M, Montazerozohori M, Rahimi N, Biysreh MN (2013) Chemically modified carbon nanotubes as efficient and selective sorbent for enrichment of trace amount of some metal ions. J Ind Eng Chem 19(5):1477–1482CrossRefGoogle Scholar
  41. 41.
    Daşbaşi T, Muğlu H, Soykan C, Ülgen A (2018) SPE and determination by FAAS of heavy metals using a new synthesized polymer resin in various water and dried vegetables samples. J Macromol Sci A 55(3):288–295Google Scholar
  42. 42.
    Baghban N, Yilmaz E, Soylak M (2018) Vortex assisted solid-phase extraction of lead (II) using orthorhombic nanosized Bi2WO6 as a sorbent. Microchim Acta 185(1):34CrossRefGoogle Scholar
  43. 43.
    Cândido Siqueira LM, de Sousa Neto JA, Coelho NMM, Alves VN (2017) Preconcentration system for determination of lead in chicken feed using Moringa oleifera husks as a biosorbent. Microchem J 133:327–332CrossRefGoogle Scholar
  44. 44.
    Golabek T, Darewicz B, Borawska M, Markiewicz R, Socha K, Kudelski J (2009) Lead concentration in the bladder tissue and blood of patients with bladder cancer. Scand J Urol Nephrol 43(6):467–470CrossRefGoogle Scholar
  45. 45.
    Chang CH, Liu CS, Liu HJ, Huang CP, Huang CY, Hsu HT, Liou SH, Chung CJ (2016) Association between levels of urinary heavy metals and increased risk of urothelial carcinoma. Int J Urol 23(3):233–239CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Urology and Nephrology CenterMansoura UniversityMansouraEgypt
  2. 2.Spectroscopy Department, Physics DivisionNational Research CenterCairoEgypt
  3. 3.Basic Science DepartmentHorus UniversityKafr SaadEgypt

Personalised recommendations