Role of Zinc in Zinc-α2-Glycoprotein Metabolism in Obesity: a Review of Literature

  • Juliana Soares Severo
  • Jennifer Beatriz Silva Morais
  • Jessica Batista Beserra
  • Loanne Rocha dos Santos
  • Stéfany Rodrigues de Sousa Melo
  • Gustavo Santos de Sousa
  • Emídio Marques de Matos Neto
  • Gilberto Simeone Henriques
  • Dilina do Nascimento MarreiroEmail author


Excessive adipose tissue promotes the manifestation of endocrine disorders such as reduction of the secretion of zinc-α2-glycoprotein (ZAG), an adipokine with anti-inflammatory and lipid-mobilizing activity. The molecular structure of this adipokine includes binding sites for zinc, a trace element with important antioxidant and immunological proprieties that also participates in energy metabolism and stimulates the function of ZAG. The objective of this review is to highlight current data on the metabolism of ZAG in obesity and the role of zinc in this process. The identified studies show that subjects with obesity have low serum concentrations of zinc and ZAG, as well as low expression of the genes encoding this protein. Thus, zinc appears to be an important regulator of the homeostasis of ZAG in the body; however, alterations in the metabolism of zinc in obesity appear to compromise the functions of ZAG. Therefore, further studies are needed to clarify the relationship between zinc and ZAG metabolism and its repercussions in obesity.


Zinc Obesity Zinc-α2-glycoprotein AZGP1 


Authors’ Contributions

Severo JS, Morais JBS, Beserra JS, Santos LR, and Sousa GS have participated to the redaction and the review of the manuscript; Matos Neto EM, Henriques GS, and Marreiro DN had supervised the paper, participated in the redaction, and the review of the paper. The authors contributed equally.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Bays H, Jones PH, Jacobson TA, Cohen D, Orringer C, Kothari S et al (2016) Lipids and bariatric procedures part 1 of 2: scientific statement from the National Lipid Association (NLA), American Society for Metabolic and Bariatric Surgery (ASMBS), and Obesity Medicine Association (OMA)∗. J Clin Lipidol 10(1):15–32Google Scholar
  2. 2.
    Koliaki C, Roden M (2016) Alterations of mitochondrial function and insulin sensitivity in human obesity and diabetes mellitus. Annu Rev Nutr 36:337–367Google Scholar
  3. 3.
    Bing C, Mracek T, Gao D, Trayhurn P (2010) Zinc-α2-glycoprotein: an adipokine modulator of body fat mass? Int J Obes 34(11):1559–1565Google Scholar
  4. 4.
    Ceperuelo-Mallafré V, Ejarque M, Duran X, Pachón G, Vázquez-Carballo A, Roche K, Núñez-Roa C, Garrido-Sánchez L, Tinahones FJ, Vendrell J, Fernández-Veledo S (2015) Zinc-α2-glycoprotein modulates AKT-dependent insulin signaling in human adipocytes by activation of the PP2A phosphatase. PLoS One 10(6):e0129644PubMedCentralGoogle Scholar
  5. 5.
    Ge S, Ryan AS (2014) Zinc-α2-glycoprotein expression in adipose tissue of obese postmenopausal women before and after weight loss and exercise+ weight loss. Metabolism 63(8):995–999PubMedCentralGoogle Scholar
  6. 6.
    Balaz M, Vician M, Janakova Z, Kurdiova T, Surova M, Imrich R, Majercikova Z, Penesova A, Vlcek M, Kiss A, Belan V, Klimes I, Olejnik J, Gasperikova D, Wolfrum C, Ukropcova B, Ukropec J (2014) Subcutaneous adipose tissue zinc-α2-glycoprotein is associated with adipose tissue and whole-body insulin sensitivity. Obesity 22(8):1821–1829Google Scholar
  7. 7.
    Ceperuelo-Mallafré V, Näf S, Escoté X, Caubet E, Gomez JM, Miranda M, Chacon MR, Gonzalez-Clemente JM, Gallart L, Gutierrez C, Vendrell J (2009) Circulating and adipose tissue gene expression of zinc-alpha2-glycoprotein in obesity: its relationship with adipokine and lipolytic gene markers in subcutaneous and visceral fat. J Clin Endocrinol Metab 94(12):5062–5069Google Scholar
  8. 8.
    Selva DM, Lecube A, Hernandez C, Baena JA, Fort JM, Simó R (2009) Lower zinc-α2-glycoprotein production by adipose tissue and liver in obese patients unrelated to insulin resistance. J Clin Endocrinol Metab 94(11):4499–4507Google Scholar
  9. 9.
    Mracek T, Ding Q, Tzanavari T, Kos K, Pinkney J, Wilding J, Trayhurn P, Bing C (2010) The adipokine zinc-α2-glycoprotein (ZAG) is downregulated with fat mass expansion in obesity. Clin Endocrinol 72(3):334–341Google Scholar
  10. 10.
    Kumar AA, Hati D, Thaker TAM, Miah L, Cunningham P, Domene C et al (2013) Strong and weak zinc binding sites in human zinc-α2-glycoprotein. FEBS Lett 587(24):3949–3954Google Scholar
  11. 11.
    Zahid H, Miah L, Lau AM, Brochard L, Hati D, Bui TT et al (2016) Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites. Biochem J 473(1):43–54Google Scholar
  12. 12.
    Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 19(5):557–566Google Scholar
  13. 13.
    Shen H, Macdonald R, Bruemmer D, Stromberg A, Daugherty A, Li XA et al (2007) Zinc deficiency alters lipid metabolism in LDL receptor–deficient mice treated with rosiglitazone. J Nutr 137(11):2339–2345Google Scholar
  14. 14.
    Ferro FED, Lima VBS, Soares NRM, Cozzolino SMF, Marreiro DN (2011) Parameters of metabolic syndrome and its relationship with zincemia and activities of superoxide dismutase and glutathione peroxidase in obese women. Biol Trace Elem Res 143:787–793Google Scholar
  15. 15.
    Martins LM, Oliveira ARS, Cruz KJC, Araújo CGB, Oliveira FE, Sousa GS et al (2014) Influence of cortisol on zinc metabolism in morbidly obese women. Nutr Hosp 29:57–63Google Scholar
  16. 16.
    Begin-Heick N, Dalpe-Scott M, Rowe J, Heick HMC (1985) Zinc supplementation attenuates insulin secretory activity in pancreatic islets of the ob/ob mouse. Diabetes 34(2):179–184Google Scholar
  17. 17.
    Cruz KJC, Morais JBS, Oliveira ARS, Severo JS, Marreiro DN (2017) The effect of zinc supplementation on insulin resistance in obese subjects: a systematic review. Biol Trace Elem Res 176(2):239–243Google Scholar
  18. 18.
    Foster M, Samman S (2012) Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients 4(7):676–694PubMedCentralGoogle Scholar
  19. 19.
    Hassan MI, Bilgrami S, Kumar V, Singh N, Yadav S, Kaur P, Singh TP (2008) Crystal structure of the novel complex formed between zinc alpha2-glycoprotein (ZAG) and prolactin-inducible protein (PIP) from human seminal plasma. J Mol Biol 384(3):663–672Google Scholar
  20. 20.
    Delker SL, West AP Jr, McDermott L, Kennedy MW, Bjorkman PJ (2004) Crystallographic studies of ligand binding by Zn-alpha2-glycoprotein. J Struct Biol 148(2):205–213Google Scholar
  21. 21.
    Gao SX, Guo J, Fan GQ, Qiao Y, Zhao RQ, Yang XJ (2018) Zinc-α2-glycoprotein alleviates high fat diet-induced insulin resistance accompanied with the decreased lipid depot in skeletal muscle in mice. J Lipid Res 59:2277–2286Google Scholar
  22. 22.
    Tisdale MJ (2009) Zinc-alpha2-glycoprotein in cachexia and obesity. Curr Opin Support Palliat Care 3(4):288–293Google Scholar
  23. 23.
    Cabassi A, Tedeschi S (2013) Zinc-α2-glycoprotein as a marker of fat catabolism in humans. Curr Opin Clin Nutr Metab Care 16(3):267–271Google Scholar
  24. 24.
    Xiao XH, Qi XY, Wang YD, Ran L, Yang J, Zhang HL, Xu CX, Wen GB, Liu JH (2018) Zinc alpha2 glycoprotein promotes browning in adipocytes. Biochem Biophys Res Commun 496(2):287–293Google Scholar
  25. 25.
    Garrido-Sanchez L, García-Fuentes E, Fernández-García D, Escote X, Alcaide J, Perez-Martinez P et al (2012) Zinc-alpha 2-glycoprotein gene expression in adipose tissue is related with insulin resistance and lipolytic genes in morbidly obese patients. PLoS One 7(3):e33264PubMedCentralGoogle Scholar
  26. 26.
    Gong FY, Zhang SJ, Deng JY, Zhu HJ, Pan H, Li NS, Shi YF (2009) Zinc-α2-glycoprotein is involved in regulation of body weight through inhibition of lipogenic enzymes in adipose tissue. Int J Obes 33(9):1023–1030Google Scholar
  27. 27.
    Wargent ET, O'dowd JF, Zaibi MS, Gao D, Bing C, Trayhurn P et al (2013) Contrasts between the effects of zinc-α2-glycoprotein, a putative β3/2-adrenoceptor agonist and the β3/2-adrenoceptor agonist BRL35135 in C57Bl/6 (ob/ob) mice. J Endocrinol 216(2):157–168Google Scholar
  28. 28.
    Zhu HJ, Dong CX, Pan H, Ping XC, Li NS, Dai YF, Wang LJ, Yang HB, Zhao WG, Gong FY (2012) rs4215 SNP in zinc-α2-glycoprotein gene is associated with obesity in Chinese north Han population. Gene 500(2):211–215Google Scholar
  29. 29.
    Gao D, Trayhurn P, Bing C (2010) Macrophage-secreted factors inhibit ZAG expression and secretion by human adipocytes. Mol Cell Endocrinol 325(1):135–142Google Scholar
  30. 30.
    Mracek T, Gao D, Tzanavari T, Bao Y, Xiao X, Stocker C, Trayhurn P, Bing C (2010) Downregulation of zinc-α2-glycoprotein in adipose tissue and liver of obese ob/ob mice and by tumour necrosis factor-α in adipocytes. J Endocrinol 204(2):165–172PubMedCentralGoogle Scholar
  31. 31.
    Simó R, Hernández C, Sáez-López C, Soldevila B, Puig-Domingo M, Selva DM (2014) Thyroid hormone upregulates zinc-α 2-glycoprotein production in the liver but not in adipose tissue. PLoS One 9(1):e85753PubMedCentralGoogle Scholar
  32. 32.
    Russell ST, Tisdale MJ (2005) The role of glucocorticoids in the induction of zinc-α2-glycoprotein expression in adipose tissue in cancer cachexia. Br J Cancer 92(5):876–881PubMedCentralGoogle Scholar
  33. 33.
    Zhu H, Liu M, Zhang N, Pan H, Lin G, Li N, Wang L, Yang H, Yan K, Gong F (2018) Circulating and adipose tissue mRNA levels of zinc-α2-glycoprotein, leptin, high-molecular-weight adiponectin, and tumor necrosis factor-alpha in colorectal cancer patients with or without obesity. Front Endocrinol (Lausanne) 9:190Google Scholar
  34. 34.
    Fain JN, Tagele BM, Cheema P, Madan AK, Tichansky DS (2010) Release of 12 adipokines by adipose tissue, nonfat cells, and fat cells from obese women. Obesity. 18(5):890–896Google Scholar
  35. 35.
    Marrades MP, Martínez JA, Moreno-Aliaga MJ (2008) ZAG, a lipid mobilizing adipokine, is downregulated in human obesity. J Physiol Biochem 64(1):61–66Google Scholar
  36. 36.
    Rolli V, Radosavljevic M, Astier V, Macquin C, Castan-Laurell I, Visentin V, Guigné C, Carpéné C, Valet P, Gilfillan S, Bahram S (2007) Lipolysis is altered in MHC class I zinc-α2-glycoprotein deficient mice. FEBS Lett 581(3):394–400Google Scholar
  37. 37.
    Eckardt K, Schober A, Platzbecker B, Mracek T, Bing C, Trayhurn P, Eckel J (2011) The adipokine zinc-α 2-glycoprotein activates AMP kinase in human primary skeletal muscle cells. Arch Physiol Biochem 117(2):88–93Google Scholar
  38. 38.
    Bing C, Russell ST, Beckett EE, Collins P, Taylor S, Barraclough R, Tisdale MJ, Williams G (2002) Expression of uncoupling proteins-1, −2 and −3 mRNA is induced by an adenocarcinoma-derived lipid-mobilizing factor. Br J Cancer 86(4):612–618PubMedCentralGoogle Scholar
  39. 39.
    Russell ST, Tisdale MJ (2010) Antidiabetic properties of zinc-α2-glycoprotein in ob/ob mice. Endocrinology. 151(3):948–957Google Scholar
  40. 40.
    Speros P (2010) GLP pre clinical rodent studies of ZAG as an anti-obesity, Anti-Diabetic Therapeu. National Institute of Health (NIH)Google Scholar
  41. 41.
    Euclydes VLV, Castro NP, Lima LR, Brito C, Ribeiro L, Simões FA, Requena G, Luzia LA, Rondó PH (2018) Cord blood concentrations of leptin, zinc-α2-glycoprotein, and adiponectin, and adiposity gain during the first 3 mo of life. Nutrition 54:89–93Google Scholar
  42. 42.
    Yang CJ, Han RY, Wang SS (2017) Correlation of serum zinc alpha 2 glycoprotein with blood lipid and reproductive hormone levels in men. Zhonghua Nan Ke Xue 23(11):997–100Google Scholar
  43. 43.
    Morse KW, Astbury NM, Walczyszyn A, Hashim SA, Geliebter A (2017) Changes in zinc-α2-glycoprotein (ZAG) plasma concentrations pre and post Roux-En-Y gastric bypass surgery (RYGB) or a very low calorie (VLCD) diet in clinically severe obese patients: preliminary study. Integr Obes Diabetes 3(2)Google Scholar
  44. 44.
    Liu M, Zhu H, Dai Y, Pan H, Li N, Wang L, Yang H, Yan K, Gong F (2018) Zinc-α2-glycoprotein is associated with obesity in Chinese people and HFD-induced obese mice. Front Physiol 9:62PubMedCentralGoogle Scholar
  45. 45.
    Qu C, Zhou X, Yang G, Li L, Liu H, Liang Z (2016) The natural logarithm of zinc-α2-glycoprotein/HOMA-IR is a better predictor of insulin sensitivity than the product of triglycerides and glucose and the other lipid ratios. Cytokine. 79:96–102Google Scholar
  46. 46.
    Marreiro DN, Gelozene B, Tambascia MA, Lerário AC, Halpern A, Cozzolino SMF (2006) Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res 112:109–118Google Scholar
  47. 47.
    Yerlikaya FH, Toker A, Aribas A (2013) Serum trace elements in obese women with or without diabetes. Indian J Med Res 137(2):339–345PubMedCentralGoogle Scholar
  48. 48.
    Feitosa MCP, Lima VBS, Marreiro DN (2012) Participação da inflamação sobre o metabolismo do zinco na obesidade. Nutrire 37(1):93–104Google Scholar
  49. 49.
    Cayir A, Doneray H, Kurt N, Orbak Z, Kaya A, Turan MI, Yildirim A (2014) Thyroid functions and trace elements in pediatric patients with exogenous obesity. Biol Trace Elem Res 157(2):95–100Google Scholar
  50. 50.
    Suliburska J, Bogdanski P, Szulinska M, Pupek-Musialik D, Jablecka A (2014) Changes in mineral status are associated with improvements in insulin sensitivity in obese patients following L-arginine supplementation. Eur J Nutr 53(2):387–393Google Scholar
  51. 51.
    Feitosa MCP, Lima VBS, Neto JMM, Marreiro DN (2013) Plasma concentration of IL-6 and TNF-α and its relationship with zincemia in obese women. Rev Assoc Med Bras 59(5):429–434Google Scholar
  52. 52.
    Severo JS, Morais JBS, Oliveira ARS, Cruz KJC, Santos LR, Melo SRS et al (2016) Teor de Zinco na Dieta de Mulheres Obesas e sua Relação com Marcador de Peroxidação Lipídica. Nutrição em Pauta 24:5–9Google Scholar
  53. 53.
    Freire SC, Fisberg M, Cozzolino SMF (2013) Dietary intervention causes redistribution of zinc in obese adolescents. Biol Trace Elem Res 154:168–177Google Scholar
  54. 54.
    Gibson RSA (2012) Historical review of progress in the assessment of dietary zinc intake as an indicator of population zinc status. Adv Nutr 3:772–782PubMedCentralGoogle Scholar
  55. 55.
    Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, Ganz T, Cousins RJ (2005) Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Pnas. 102:6843–6848Google Scholar
  56. 56.
    Noh H, Paik HY, Kim J, Chung J (2014) The changes of zinc transporter ZnT gene expression in response to zinc supplementation in obese women. Biol Trace Elem Res 162(1–3):38–45Google Scholar
  57. 57.
    Tominaga K, Kagata T, Johmura Y, Hishida T, Nishizuka M, Imagawa M (2005) SLC39A14, a LZT protein, is induced in adipogenesis and transports zinc. FEBS J 272(7):1590–1599Google Scholar
  58. 58.
    Maxel T, Smidt K, Larsen A, Bennetzen M, Cullberg K, Fjeldborg K et al (2015) Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes. BMC Obes 2(1):1Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Juliana Soares Severo
    • 1
  • Jennifer Beatriz Silva Morais
    • 1
  • Jessica Batista Beserra
    • 1
  • Loanne Rocha dos Santos
    • 1
  • Stéfany Rodrigues de Sousa Melo
    • 1
  • Gustavo Santos de Sousa
    • 2
  • Emídio Marques de Matos Neto
    • 3
  • Gilberto Simeone Henriques
    • 4
  • Dilina do Nascimento Marreiro
    • 1
    Email author
  1. 1.Department of NutritionFederal University of PiauiTeresinaBrazil
  2. 2.Faculty of Medical SciencesState University of PiauíTeresinaBrazil
  3. 3.Department of Physical EducationFederal University of PiauiTeresinaBrazil
  4. 4.School of NursingFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations