Association Between Cortisol, Insulin Resistance and Zinc in Obesity: a Mini-Review

  • Jennifer Beatriz Silva Morais
  • Juliana Soares Severo
  • Jéssica Batista Beserra
  • Ana Raquel Soares de Oiveira
  • Kyria Jayanne Clímaco Cruz
  • Stéfany Rodrigues de Sousa Melo
  • Ginivaldo Victor Ribeiro do Nascimento
  • George Fred Soares de Macedo
  • Dilina do Nascimento MarreiroEmail author


Adipose tissue is considered an endocrine organ and its excess compromises the immune response and the metabolism of hormones and nutrients. Furthermore, visceral fat accumulation contributes to increased cortisol synthesis, which in turn induces metallothionein and Zip14 expression, which are proteins that contribute to reducing plasma zinc levels. Zinc plays a critical role in the secretion and signaling of insulin. Changes in the biochemical parameters of zinc, as observed in individuals who are obese, contribute to the manifestation of related disorders such as insulin resistance. Thus, the purpose of this review is to provide an update on the current information on the relationship between cortisol, zinc, and insulin resistance in obesity. The data in the literature provide evidence that cortisol affects zinc metabolism, and indicate possible repercussions on insulin signaling that might contribute to the development of resistance to the actions of insulin in obesity.


Zinc Cortisol Insulin resistance Obesity Metabolism 


Author Contributions

The authors contributed equally.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    World Health Organization (2012) Word health statistics. Technical report series, GenevaGoogle Scholar
  2. 2.
    Cruz KJC, Morais JBS, Oliveira ARS, Severo JS, Oliveira AR, Marreiro DN (2017) The effect of zinc supplementation on insulin resistance in obese subjects: a systematic review. Biol Trace Elem Res 176:239–243CrossRefGoogle Scholar
  3. 3.
    Morais JBS, Severo JS, Oliveira ARS, Cruz KJC, Dias TMS, Assis RC, Colli C, Marreiro DN (2017) Magnesium status and its association with oxidative stress in obese women. Biol Trace Elem Res 175:306–331CrossRefGoogle Scholar
  4. 4.
    Oliveira AR, Cruz KJ, Morais JB, Severo JS, Freitas TE, Veras AL, Romero ABR, Colli C, Nogueira NN, Torres-Leal FL, Marreiro DN (2015) Magnesium status and its relationship with c-reactive protein in obese women. Biol Trace Elem Res 168:296–302CrossRefGoogle Scholar
  5. 5.
    Scherer T, Lindtner C, Zielinski E, O'hare J, Filatova N, Buettner C (2012) Short term voluntary overfeeding disrupts brain insulin control of adipose tissue lipolysis. J Biol Chem 287:33061–33069CrossRefGoogle Scholar
  6. 6.
    Shibata R, Ouchi N, Ohashi K, Murohara T (2017) The role of adipokines in cardiovascular disease. J Cardiol 70:329–334CrossRefGoogle Scholar
  7. 7.
    Geer EB, Islam J, Buettner C (2014) Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism. Endocrinol Metab Clin North Am 43:75–102CrossRefGoogle Scholar
  8. 8.
    Martins LM, Oliveira ARS, Cruz KJC, Araújo CGB, Oliveira FE, Sousa GS, Nogueira NN, Marreiro DN (2014) Influence of cortisol on zinc metabolism in morbidly obese women. Nutr Hosp 29:57–63Google Scholar
  9. 9.
    Rodriguez ACI, Epel ES, White ML, Standen EC, Seckl JR, Tomiyama AJ (2015) Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: a systematic review. Psychoneuroendocrinology 62:301–318CrossRefGoogle Scholar
  10. 10.
    Chao AM, Jastreboff AM, White MA, Grilo CM, Sinha R (2017) Stress, cortisol, and other appetite-related hormones: prospective prediction of 6-month changes in food cravings and weight. Obesity (Silver Spring) 25:713–720CrossRefGoogle Scholar
  11. 11.
    Desarzens S, Faresse N (2016) Adipocyte glucocorticoid receptor has a minor contribution in adipose tissue growth. J Endocrinol 230:1–11CrossRefGoogle Scholar
  12. 12.
    Bury NR, Chung MJ, Sturm A, Walker PA, Hogstrand C (2008) Cortisol stimulates the zinc signaling pathway and expression of metallothioneins and ZnT1 in rainbow trout gill epithelial cells. Am J Physiol RegulIntegr Comp Physiol 294:623–629CrossRefGoogle Scholar
  13. 13.
    Noh H, Paik HY, Kim J, Chung J (2014) The changes of zinc transporter ZnT gene expression in response to zinc supplementation in obese women. Biol Trace Elem Res 162:38–45CrossRefGoogle Scholar
  14. 14.
    Cooper-Capetini V, Vasconcelos DAA, Martins AR, Hirabara SM, Donato J, Carpinelli AR, Abdulkader F (2017) Zinc supplementation improves glucose homeostasis in high fat-fed mice by enhancing pancreatic β-cell function. Nutrients 9:1–12CrossRefGoogle Scholar
  15. 15.
    Troche C, Aydemir TB, Cousins RJ (2016) Zinc transporter Slc39a14 regulates inflammatory signaling associated with hypertrophic adiposity. Am J Physiol Endocrinol Metab 310:258–268CrossRefGoogle Scholar
  16. 16.
    Papafotiou C, Christaki E, Van Den Akker EL, Wester VL, Apostolakou F, Papassotiriou I, Chrousos GP, Pervanidou P (2017) Hair cortisol concentrations exhibit a positive association with salivary cortisol profiles and are increased in obese prepubertal girls. Stress 20:217–222CrossRefGoogle Scholar
  17. 17.
    Huang CJ, Acevedo EO, Mari DC, Randazzo C, Shibata Y (2014) Glucocorticoid inhibition of leptin- and lipopolysaccharide-induced interleukin-6 production in obesity. Brain Behav Immun 35:163–168CrossRefGoogle Scholar
  18. 18.
    Edwards C (2012) Sixty years after Hench--corticosteroids and chronic inflammatory disease. J Clin Endocrinol Metab 97(5):1443–1451CrossRefGoogle Scholar
  19. 19.
    Kaur K, Hardy R, Ahasan MM, Eijken M, van Leeuwen JP, Filer A, Thomas AM, Raza K, Buckley CD, Stewart PM, Rabbitt EH, Hewison M, Cooper MS (2010) Synergistic induction of local glucocorticoid generation by inflammatory cytokines and glucocorticoids: implications for inflammation associated bone loss. Ann Rheum Dis 69(6):1185–1190CrossRefGoogle Scholar
  20. 20.
    Gathercole LL, Morgan SA, Bujalska IJ, Hauton D, Stewart PM, Tomlinson JW (2011) Regulation of lipogenesis by glucocorticoids and insulin in human adipose tissue. PLoS One 6:26223CrossRefGoogle Scholar
  21. 21.
    Pavlatou MG, Vickers KC, Varma S, Malek R, Sampson M, Remaley AT et al (2013) Circulating cortisol-associated signature of glucocorticoid-related gene expression in subcutaneous fat of obese subjects. Obesity (Silver Spring) 21(5):960–967CrossRefGoogle Scholar
  22. 22.
    De Bosscher K, Haegeman G (2009) Minireview: latest perspectives on antiinflammatory actions of glucocorticoids. Mol Endocrinol 23(3):281–291CrossRefGoogle Scholar
  23. 23.
    Schweiger M, Romauch M, Schreiber R, Grabner GF, Hutter S (2017) Pharmacological inhibition of adipose triglyceride lipase corrects high-fat diet-induced insulin resistance and hepatosteatosis in mice. Nat Commun 22:14859CrossRefGoogle Scholar
  24. 24.
    Yang XD, Xiang DX, Yang YY (2016) Role of E3 ubiquitin ligases in insulin resistance. Diabetes Obes Metab 18:747–754CrossRefGoogle Scholar
  25. 25.
    Kim DK, Kim YH, Hynx D, Wang Y, Yang KJ, Ryu D, Kim KS, Yoo EK, Kim JS, Koo SH, Lee IK, Chae HZ, Park J, Lee CH, Biddinger SB, Hemmings BA, Choi HS (2014) PKB/Akt phosphorylation of ERRgamma contributes to insulin-mediated inhibition of hepatic gluconeogenesis. Diabetol 57:2576–2585CrossRefGoogle Scholar
  26. 26.
    Benbaibeche H, Haffaf ELM, Kacimi G, Oudjit B, Khan NA, Koceïr EA (2015) Implication of corticotropic hormone axis in eating behaviour pattern in obese and type 2 diabetic participants. Br J Nutr 113:1237–1243CrossRefGoogle Scholar
  27. 27.
    Yuan X, Li H, Bai H, Zhao X, Zhang C, Liu H, Zhang Y, Zhao B, Wu Y, Liu J, Xiang Q, Feng B, Chu Y, Huang Y (2016) The 11β-hydroxysteroid dehydrogenase type 1 inhibitor protects against the insulin resistance and hepatic steatosis in db/db mice. Eur J Pharmacol 27:140–151CrossRefGoogle Scholar
  28. 28.
    Shao S, Zhang X, Zhang M (2016) Inhibition of 11β-hydroxysteroid dehydrogenase type 1 ameliorates obesity-related insulin resistance. Biochem Biophys Res Commun 478:474–480CrossRefGoogle Scholar
  29. 29.
    Rosenstock J, Banarer S, Fonseca VA, Inzucchi SE, Sun W, Yao W, Hollis G, Flores R, Levy R, Willians WV, Seckl JR, Huber R (2010) The 11-beta-hydroxysteroid dehydrogenase type 1 inhibitor INCB13739 improves hyperglycemia in patients with type 2 diabetes inadequately controlled by metformin monotherapy. Diabetes Care 33:1516–1522CrossRefGoogle Scholar
  30. 30.
    Macfarlane DP, Raubenheimer PJ, Preston T, Gray CD, Bastin ME, Marshall I, Iredale JP, Andrew R, Walker BR (2014) Effects of acute glucocorticoid blockade on metabolic dysfunction in patients with type 2 diabetes with and without fatty liver. Am J Physiol Gastrointest Liver Physiol 307:760–768CrossRefGoogle Scholar
  31. 31.
    Hazlehurst JM, Gathercole LL, Nasiri M, Armstrong MJ, Borrows S, Yu J, Wagenmakers AJ, Stewart PM, Tomlinson JW (2013) Glucocorticoids fail to cause insulin resistance in human subcutaneous adipose tissue in vivo. J Clin Endocrinol Metab 98:1631–1640CrossRefGoogle Scholar
  32. 32.
    Linssen MM, Van Raalte DH, Toonen EJ, Alkema W, Van Der Zon GC, Dokter WH (2011) Prednisolone-induced beta cell dysfunction is associated with impaired endoplasmic reticulum homeostasis in INS-1E cells. Cell Signal 23:1708–1715CrossRefGoogle Scholar
  33. 33.
    García OP, Ronquillo D, Caamaño MC, Martínez G, Camacho M, López V, Rosado J (2013) Zinc, iron and vitamins A, C and E are associated with obesity, inflammation, lipid profile and insulin resistance in Mexican school-aged children. Nutrients 5:5012–5030CrossRefGoogle Scholar
  34. 34.
    Kelishadi R, Hashemipour M, Adeli K, Tavakoli N, Movahedian-Attar A, Shapouri J, Poursafa P, Uma R (2010) Effect of zinc supplementation on markers of insulin resistance, oxidative stress, and inflammation among prepubescent children with metabolic syndrome. Metab Syndr Relat Disord 8:505–510CrossRefGoogle Scholar
  35. 35.
    Suliburska J, Cofta S, Gajewska E, Kalmus G, Sobieska M, Samborski W, Krejpcio Z, Drzymala-Czys S, Bodanski P (2013) The evaluation of selected serum mineral concentrations and their association with insulin resistance in obese adolescents. Eur Rev Med Pharmacol Sci 17:2396–2400PubMedGoogle Scholar
  36. 36.
    Kim J, Ahn J (2014) Effect of zinc supplementation on inflammatory markers and adipokines in young obese women. Biol Trace Elem Res 157:101–106CrossRefGoogle Scholar
  37. 37.
    Takeda A, Tamano H, Ogawa T, Takada S, Ando M, Oku N, Watanabe M (2012) Significance of serum glucocorticoid and chelatable zinc in depression and cognition in zinc deficiency. Behav Brain Res 226:259–264CrossRefGoogle Scholar
  38. 38.
    Takeda A, Tamano H (2010) Zinc signaling through glucocorticoid and glutamate signaling in stressful circumstances. Neurosci Res 88:3002–3010CrossRefGoogle Scholar
  39. 39.
    Brandão-Neto J, Mendonça BB, Shuhama T, Marchini JS, Pimenta WP, Tornero MTT (1990) Zinc acutely and temporarily inhibits adrenal cortisol secretion in humans. Biol Trace Elem Res 24:83–89CrossRefGoogle Scholar
  40. 40.
    Capdor J, Foster M, Petocz P, Samman S (2013) Zinc and glycemic control: a meta-analysis of randomised placebo controlled supplementation trials in humans. J Trace Elem Med Biol 27:137–142CrossRefGoogle Scholar
  41. 41.
    Marreiro DN, Geloneze B, Tambascia MA, Lerário AC, Halpern A, Cozzolino SM (2006) Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res 112:109–118CrossRefGoogle Scholar
  42. 42.
    Vardatsikos G, Pandey NR, Srivastava AK (2013) Insulino-mimetic and anti-diabetic effects of zinc. J Inorg Biochem 120:8–17CrossRefGoogle Scholar
  43. 43.
    Demaegdt H, De Backer JP, Lukaszuka TG, Szemenyeie TD, Vauquelin G (2012) Angiotensin IV displays only low affinity for native insulin-regulated aminopeptidase (IRAP). Fundam Clin Pharmacol 26:194–197CrossRefGoogle Scholar
  44. 44.
    Balaz M, Vician M, Janakova Z, Kurdiova T, Surova M, Imrich R, Majercikova Z, Penesova A, Vicek M, Kiss A, Belan V, Klimes I, Olejnik J, Gasperikova D, Wolfrum C, Ukropcova B, Ukropec J (2014) Subcutaneous adipose tissue zinc-alpha2-glycoprotein is associated with adipose tissue and whole-body insulin sensitivity. Obesity (Silver Spring) 22:1821–1829CrossRefGoogle Scholar
  45. 45.
    Buchner DA, Charrier A, Srinivasan E, Wang L, Paulsen MT, Ljungman M, Bridges D, Saltiel AR (2015) Zinc finger protein 407 (ZFP407) regulates insulin-stimulated glucose uptake and glucose transporter 4 (Glut4) mRNA. J Biol Chem 290:6376–6386CrossRefGoogle Scholar
  46. 46.
    Fraker PJ, Osati-Ashtiani F, Wagner MA, King LE (1995) Possible roles for glucocorticoids and apoptosis in the suppression of lymphopoiesis during zinc deficiency: a review. J Am Coll Nutr 14:11–17CrossRefGoogle Scholar
  47. 47.
    Chen D, Li X, Zhai Z, Shu HB (2002) A novel zinc finger protein interacts with receptor-interacting protein (RIP) and inhibits tumor necrosis factor (TNF)- and IL1-induced NF-kappa B activation. J Biol Chem 277:15985–15991CrossRefGoogle Scholar
  48. 48.
    Takeda A, Tamano H (2009) Insight into zinc signaling from dietary zinc deficiency. Brain Res Rev 62:33–44CrossRefGoogle Scholar
  49. 49.
    Hackett RA, Kivimäki M, Kumari MSA (2016) Diurnal cortisol patterns, future diabetes, and impaired glucose metabolism in the Whitehall II cohort study. J Clin Endocrinol Metab 101:619–625CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jennifer Beatriz Silva Morais
    • 1
  • Juliana Soares Severo
    • 1
  • Jéssica Batista Beserra
    • 1
  • Ana Raquel Soares de Oiveira
    • 1
  • Kyria Jayanne Clímaco Cruz
    • 1
  • Stéfany Rodrigues de Sousa Melo
    • 1
  • Ginivaldo Victor Ribeiro do Nascimento
    • 2
  • George Fred Soares de Macedo
    • 3
  • Dilina do Nascimento Marreiro
    • 1
    Email author
  1. 1.Department of Nutrition, Health Sciences CenterFederal University of PiauíTeresinaBrazil
  2. 2.State University of PiauíTeresinaBrazil
  3. 3.Hopital GastrovitaTeresinaBrazil

Personalised recommendations