Combination of Soy Protein, Amylopectin, and Chromium Stimulates Muscle Protein Synthesis by Regulation of Ubiquitin–Proteasome Proteolysis Pathway after Exercise

  • Veysi Kayri
  • Cemal Orhan
  • Mehmet Tuzcu
  • Patrick Brice Deeh Defo
  • Hafize Telceken
  • Mehmet Irmak
  • Nurhan Sahin
  • Hakki Tastan
  • James R. Komorowski
  • Kazim SahinEmail author


The present study was undertaken to investigate the effect of the combination of soy protein, amylopectin, and chromium (SAC) on muscle protein synthesis and signal transduction pathways involved in protein synthesis (mTOR pathways, IGF-1, and AktSer473) and proteolysis (FOXO1Ser256; MURF1, MAFbx) after exercise. Thirty-five Wistar rats were randomly divided into five groups: (1) control (C); (2) exercise (E); (3) exercise + soy protein (3.1 g/kg/day) (E + S); (4) exercise + soy protein + chromium (E + S + Cr); (5) exercise + soy protein + amylopectin + chromium (E + S + A + Cr). Post-exercise ingestion of SAC significantly increased the fractional rate of protein synthesis (FSR), insulin, glycogen, and amino acid levels with the highest effect observed in E + S + A + Cr group (P ˂ 0.05). However, SAC supplementation decreased the lactic acid concentration (P ˂ 0.05). A reduction in forkhead box protein O1 (FOXO1) and forkhead box protein O3 (FOXO3) (regulators of ubiquitin-related proteolysis) and muscle atrophy F-box (MAFbx) levels was noted after treatment with SAC (P < 0.05). Insulin-like growth factor 1(IGF-1) level was increased in the E + S, E + S + Cr, and E + S + A + Cr groups (P < 0.05). While the phosphorylation of 4E-BP1Thr37/46, AktSer473, mTORSer2448, and S6K1Thr389 levels increased after SAC supplementation, phosphorylated muscle ring finger 1 (MuRF-1, an E3-ubiquitin ligase gene) was found to be significantly lower compared with the E group (P ˂ 0.05). These results indicate that SAC supplementation improves FSR, insulin, and glycogen levels after exercise. SAC improves protein synthesis by inhibiting the ubiquitin–proteasome pathway and inducing anabolic metabolism.


Soy protein Amylopectin Chromium Protein synthesis Ubiquitin–proteasome pathway 



This work was granted by Firat University Scientific Research Projects Unit (VF.16.20) and the Turkish Academy of Sciences (K.S.). The authors thank Nutrition21 (Purchase, NY, USA) for providing amylopectin + chromium and to Mr. Besir Er for his kind efforts during this study.

Authors’ Contributions

K.S. and J.R.K. participated in the study design and drafting the manuscript. C.O., M.T., and N.S. participated in the data collection and assays, data analysis, and drafting the manuscript. C.O. and D.D.P.B. participated in the data analysis and statistical analysis for the variables and drafting the manuscript. K.S. and J.R.K. participated in drafting the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there are no conflicts of interest. J.R.K. is employed by Nutrition21, Purchase, NY, USA.

Compliance with Ethical Standards

All animal experimental procedures followed protocols approved by the Experimental Animal Ethics Committee of Firat University (Elazig, Turkey).


  1. 1.
    Damas F, Libardi CA, Ugrinowitsch C (2018) The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis. Eur J Appl Physiol 118(3):485–500. CrossRefPubMedGoogle Scholar
  2. 2.
    Stokes T, Hector AJ, Morton RW, McGlory C, Phillips SM (2018) Recent perspectives regarding the role of dietary protein for the promotion of muscle hypertrophy with resistance exercise training. Nutrients 10(2):E180. CrossRefPubMedGoogle Scholar
  3. 3.
    Biolo G, Maggi SP, Williams BD, Tipton KD, Wolfe RR (1995) Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. Am J Phys 268(3):E514–E520Google Scholar
  4. 4.
    Phillips SM, Tipton KD, Aarsland A, Wolf SE, Wolfe RR (1997) Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Phys 273:E99–E107Google Scholar
  5. 5.
    Kanda A, Nakayama K, Fukasawa T, Koga J, Kanegae M, Kawanaka K, Higuchi M (2013) Post-exercise whey protein hydrolysate supplementation induces a greater increase in muscle protein synthesis than its constituent amino acid content. Br J Nutr 110:981–987. CrossRefPubMedGoogle Scholar
  6. 6.
    Koopman R, Walrand S, Beelen M, Gijsen AP, Kies AK, Boirie Y, Saris WH, van Loon LJ (2009) Dietary protein digestion and absorption rates and the subsequent postprandial muscle protein synthetic response do not differ between young and elderly men. J Nutr 139(9):1707–1713. CrossRefPubMedGoogle Scholar
  7. 7.
    Anthony JC, Anthony TG, Layman DK (1999) Leucine supplementation enhances skeletal muscle recovery in rats following exercise. J Nutr 129(6):1102–1106CrossRefGoogle Scholar
  8. 8.
    Williamson DL, Kubica N, Kimball SR, Jefferson LS (2006) Exercise-induced alterations in extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin (mTOR) signalling to regulatory mechanisms of mRNA translation in mouse muscle. J Physiol 573(2):497–510. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Allen DL, Unterman TG (2007) Regulation of myostatin expression and myoblast differentiation by FOXO and SMAD transcription factors. Am J Physiol Cell Physiol 292(1):C188–C199. CrossRefPubMedGoogle Scholar
  10. 10.
    Nader GA (2005) Molecular determinants of skeletal muscle mass: getting the "AKT" together. Int J Biochem Cell Biol 37(10):1985–1996. CrossRefPubMedGoogle Scholar
  11. 11.
    Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, Matsuda J, Aburatani H, Nishino I, Ezaki O (2004) Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down regulated type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 279(39):41114–41123. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) FOXO transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412CrossRefGoogle Scholar
  13. 13.
    Lokireddy S, Wijesoma IW, Sze SK, McFarlane C, Kambadur R, Sharma M (2012) Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting. Am J Physiol Cell Physiol 303(5):C512–C529. CrossRefPubMedGoogle Scholar
  14. 14.
    Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ (2007) The E3 ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6(5):376–385. CrossRefPubMedGoogle Scholar
  15. 15.
    Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185(6):1083–1095. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Burke DG, Chilibeck PD, Davidson KS, Candow DG, Farthing J, Smith-Palmer T (2001) The effect of whey protein supplementation with and without creatine monohydrate combined with resistance training on lean tissue mass and muscle strength. Int J Sport Nutr Exerc Metab 11(3):349–364CrossRefGoogle Scholar
  17. 17.
    Kanda A, Nakayama K, Sanbongi C, Nagata M, Ikegami S, Itoh H (2016) Effects of whey, caseinate, or milk protein ingestion on muscle protein synthesis after exercise. Nutrients 8(6):E339. CrossRefPubMedGoogle Scholar
  18. 18.
    Paul G, Mendelson GJ (2015) Evidence supports the use of soy protein to promote cardiometabolic health and muscle development. J Am Coll Nutr 34(1):56–59. CrossRefPubMedGoogle Scholar
  19. 19.
    Shenoy S, Dhawan M, Sandhu JS (2016) Four weeks of supplementation with isolated soy protein attenuates exercise-induced muscle damage and enhances muscle recovery in well trained athletes: a randomized trial. Asian J Sports Med 7(3):e33528. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Burke LM, Hawley JA, Ross ML, Moore DR, Phillips SM, Slater GR, Stellingwerff T, Tipton KD, Garnham AP, Coffey VG (2012) Preexercise aminoacidemia and muscle protein synthesis after resistance exercise. Med Sci Sports Exerc 44(10):1968–1977. CrossRefPubMedGoogle Scholar
  21. 21.
    Norton LE, Layman DK (2006) Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr 136(2):533S–537S. CrossRefPubMedGoogle Scholar
  22. 22.
    Wang Q, Ge X, Tian X, Zhang Y, Zhang J, Zhang P (2013) Soy isoflavone: the multipurpose phytochemical (review). Biomed Rep 1(5):697–701. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen WY, Chen CJ, Liu CH, Mao FC (2008) Chromium supplementation enhances insulin signalling in skeletal muscle of obese KK/HlJ diabetic mice. Diabetes Obes Metab 11(4):293–303. CrossRefPubMedGoogle Scholar
  24. 24.
    Sahin K, Tuzcu M, Orhan C, Ali S, Sahin N, Gencoglu H, Ozkan Y, Hayirli A, Gozel N, Komorowski JR (2013) Chromium modulates expressions of neuronal plasticity markers and glial fibrillary acidic proteins in hypoglycemia-induced brain injury. Life Sci 93(25–26):1039–1048. CrossRefPubMedGoogle Scholar
  25. 25.
    Ziegenfuss TN, Lopez HL, Kedia A, Habowski SM, Sandrock JE, Raub B, Kerksick CM, Ferrando AA (2017) Effects of an amylopectin and chromium complex on the anabolic response to a suboptimal dose of whey protein. J Int Soc Sports Nutr 14:6. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bradstreet RB (1954) Kjeldahl method for organic nitrogen. Anal Chem 26(1):185–187. CrossRefGoogle Scholar
  27. 27.
    Gautsch TA, Anthony JC, Kimball SR, Paul GL, Layman DK, Jefferson LS (1998) Availability of eIF4E regulates skeletal muscle protein synthesis during recovery from exercise. Am J Phys 274(2):406–414CrossRefGoogle Scholar
  28. 28.
    Bark TH, McNurlan MA, Lang CH, Garlick PJ (1998) Increased protein synthesis after acute IGF-I or insulin infusion is localized to muscle in mice. Am J Phys 275:E118–E123Google Scholar
  29. 29.
    Takach E, O'Shea T, Liu H (2014) High-throughput quantitation of amino acids in rat and mouse biological matrices using stable isotope labeling and UPLC-MS/MS analysis. J Chromatogr B Anal Technol Biomed Life Sci 964:180–190. CrossRefGoogle Scholar
  30. 30.
    Bottiglieri T (1987) The effect of storage on rat tissues and human plasma amino acid levels determined by HPLC. Biomed Chromatogr 2(5):195–196CrossRefGoogle Scholar
  31. 31.
    Tang JE, Moore DR, Kujbida GW, Tarnopolsky MA, Phillips SM (2009) Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol 107(3):987–992. CrossRefPubMedGoogle Scholar
  32. 32.
    Vincent JB (2004) Recent advances in the nutritional biochemistry of trivalent chromium. Proc Nutr Soc 63(1):41–47. CrossRefPubMedGoogle Scholar
  33. 33.
    Wang H, Kruszewski A, Brautigan DL (2005) Cellular chromium enhances activation of insulin receptor kinase. Biochemistry 44(22):8167–8175. CrossRefPubMedGoogle Scholar
  34. 34.
    Hoffman NJ, Penque BA, Habegger KM, Sealls W, Tackett L, Elmendorf JS (2014) Chromium enhances insulin responsiveness via AMPK. J Nutr Biochem 25(5):565–572. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Evans GW, Bowman TD (1992) Chromium picolinate increases membrane fluidity and rate of insulin internalization. J Inorg Biochem 46(4):243–250CrossRefGoogle Scholar
  36. 36.
    Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: an overview. J Nutr 136(6):1636S–1640S. CrossRefPubMedGoogle Scholar
  37. 37.
    Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492. CrossRefPubMedGoogle Scholar
  38. 38.
    Stuart MP (2014) A brief review of critical processes in exercise-induced muscular hypertrophy. Sports Med 44(1):71–77Google Scholar
  39. 39.
    Blomstrand E, Eliasson J, Karlsson HK, Köhnke R (2006) Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J Nutr 136(1):269S–273S. CrossRefPubMedGoogle Scholar
  40. 40.
    Escobar J, Frank JW, Suryawan A, Nguyen HV, Kimball SR, Jefferson LS, Davis TA (2005) Physiological rise in plasma leucine stimulates muscle protein synthesis in neonatal pigs by enhancing translation initiation factor activation. Am J Physiol Endocrinol Metab 288(5):E914–E921. CrossRefPubMedGoogle Scholar
  41. 41.
    Connors MT, Poppi DP, Cant JP (2008) Protein elongation rates in tissues of growing and adult sheep. J Anim Sci 86(9):2288–2295. CrossRefPubMedGoogle Scholar
  42. 42.
    Frank JW, Escobar J, Suryawan A, Nguyen HV, Kimball SR, Jefferson LS, Davis TA (2006) Dietary protein and lactose increase translation initiation factor activation and tissue protein synthesis in neonatal pigs. Am J Physiol Endocrinol Metab 290(2):E225–E233. CrossRefPubMedGoogle Scholar
  43. 43.
    Arden KC (2008) FOXO animal models reveal a variety of diverse roles for FOXO transcription factors. Oncogene 27(16):2345–2350. CrossRefPubMedGoogle Scholar
  44. 44.
    Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6(1):25–39. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tang ED, Nuñez G, Barr FG, Guan KL (1999) Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 274(24):16741–16746CrossRefGoogle Scholar
  46. 46.
    Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M (2007) FOXO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6(6):458–471. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S, Lecker SH, Goldberg AL (2007) FOXO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6(6):472–483. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sanchez AM, Csibi A, Raibon A, Docquier A, Lagirand-Cantaloube J, Leibovitch MP, Leibovitch SA, Bernardi H (2013) EIF3f: a central regulator of the antagonism atrophy/hypertrophy in skeletal muscle. Int J Biochem Cell Biol 45(10):2158–2162. CrossRefPubMedGoogle Scholar
  49. 49.
    Luo J, Chen D, Yu B (2010) Effects of different dietary protein sources on expression of genes related to protein metabolism in growing rats. Br J Nutr 104(10):1421–1428. CrossRefPubMedGoogle Scholar
  50. 50.
    Paula-Gomes S, Goncalves DA, Baviera AM, Zanon NM, Navegantes LC, Kettelhut IC (2013) Insulin suppresses atrophy- and autophagy related genes in heart tissue and cardiomyocytes through AKT/FOXO signaling. Horm Metab Res 45(12):849–855. CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism 124(3):471–484. CrossRefGoogle Scholar
  52. 52.
    Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, Wackerhage H, Smith K, Atherton P, Selby A, Rennie MJ (2008) Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab 295(3):E595–E604. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Anthony TG, McDaniel BJ, Knoll P, Bunpo P, Paul GL, McNurlan MA (2007) Feeding meals containing soy or whey protein after exercise stimulates protein synthesis and translation initiation in the skeletal muscle of male rats. J Nutr 37(2):357–362. CrossRefGoogle Scholar
  54. 54.
    Gallagher P, Richmond S, Dudley K, Prewitt M, Gandy N, Kudrna B, Touchberry C (2007) Interaction of resistance exercise and BCAA supplementation on Akt and p70 s6 kinase phosphorylation in human skeletal muscle. FASEB J 21:895.10 Google Scholar
  55. 55.
    Shen WH, Boyle DW, Wisniowski P, Bade A, Liechty EA (2005) Insulin and IGF-I stimulate the formation of the eukaryotic initiation factor 4F complex and protein synthesis in C2C12 myotubes independent of availability of external amino acids. J Endocrinol 185(2):275–289. CrossRefPubMedGoogle Scholar
  56. 56.
    Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates mTOR action. Cell 110(2):177–189. CrossRefGoogle Scholar
  57. 57.
    Beugnet A, Tee AR, Taylor PM, Proud CG (2003) Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J 372(1):555–566CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Veysi Kayri
    • 1
  • Cemal Orhan
    • 1
  • Mehmet Tuzcu
    • 2
  • Patrick Brice Deeh Defo
    • 3
  • Hafize Telceken
    • 1
  • Mehmet Irmak
    • 1
  • Nurhan Sahin
    • 1
  • Hakki Tastan
    • 4
  • James R. Komorowski
    • 5
  • Kazim Sahin
    • 1
    Email author
  1. 1.Department of Animal Nutrition, Faculty of Veterinary MedicineFirat UniversityElazigTurkey
  2. 2.Division of Biology, Faculty of ScienceFirat UniversityElazigTurkey
  3. 3.Department of Animal Biology, Faculty of ScienceUniversity of DschangDschangCameroon
  4. 4.Department of Biology, Faculty of ScienceGazi UniversityAnkaraTurkey
  5. 5.Scientific and Regulatory AffairsNutrition 21 IncPurchaseUSA

Personalised recommendations