Advertisement

A Brief Overview from the Physiological and Detrimental Roles of Zinc Homeostasis via Zinc Transporters in the Heart

  • Belma Turan
Article
  • 24 Downloads

Abstract

Zinc (mostly as free/labile Zn2+) is an essential structural constituent of many proteins, including enzymes in cellular signaling pathways via functioning as an important signaling molecule in mammalian cells. In cardiomyocytes at resting condition, intracellular labile Zn2+ concentration ([Zn2+]i) is in the nanomolar range, whereas it can increase dramatically under pathological conditions, including hyperglycemia, but the mechanisms that affect its subcellular redistribution is not clear. Therefore, overall, very little is known about the precise mechanisms controlling the intracellular distribution of labile Zn2+, particularly via Zn2+ transporters during cardiac function under both physiological and pathophysiological conditions. Literature data demonstrated that [Zn2+]i homeostasis in mammalian cells is primarily coordinated by Zn2+ transporters classified as ZnTs (SLC30A) and ZIPs (SLC39A). To identify the molecular mechanisms of diverse functions of labile Zn2+ in the heart, the recent studies focused on the discovery of subcellular localization of these Zn2+ transporters in parallel to the discovery of novel physiological functions of [Zn2+]i in cardiomyocytes. The present review summarizes the current understanding of the role of [Zn2+]i changes in cardiomyocytes under pathological conditions, and under high [Zn2+]i and how Zn2+ transporters are important for its subcellular redistribution. The emerging importance and the promise of some Zn2+ transporters for targeted cardiac therapy against pathological stimuli are also provided. Taken together, the review clearly outlines cellular control of cytosolic Zn2+ signaling by Zn2+ transporters, the role of Zn2+ transporters in heart function under hyperglycemia, the role of Zn2+ under increased oxidative stress and ER stress, and their roles in cancer are discussed.

Keywords

Zinc transporters Intracellular free zinc Heart failure Endoplasmic reticulum stress Left ventricle 

Notes

Acknowledgements

Many thanks to my colleagues for their excellent work. This work is supported through a grant of TUBITAK SBAG-113S466.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Maret W (2011) Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. BioMetals 24(3):411–418.  https://doi.org/10.1007/s10534-010-9406-1 PubMedCrossRefGoogle Scholar
  2. 2.
    Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118PubMedCrossRefGoogle Scholar
  3. 3.
    Prasad AS (1981) Zinc deficiency in human subjects. Prog Clin Biol Res 77:165–177PubMedGoogle Scholar
  4. 4.
    Maret W (2013) Zinc and human disease. Met Ions Life Sci 13:389–414.  https://doi.org/10.1007/978-94-007-7500-8_12 PubMedCrossRefGoogle Scholar
  5. 5.
    Coudray C, Charlon V, de Leiris J, Favier A (1993) Effect of zinc deficiency on lipid peroxidation status and infarct size in rat hearts. Int J Cardiol 41(2):109–113PubMedCrossRefGoogle Scholar
  6. 6.
    Hashemian M, Poustchi H, Mohammadi-Nasrabadi F, Hekmatdoost A (2015) Systematic review of zinc biochemical indicators and risk of coronary heart disease. ARYA Atherosclerosis 11(6):357–365PubMedPubMedCentralGoogle Scholar
  7. 7.
    Bayir A, Kara H, Kiyici A, Ozturk B, Akyurek F (2013) Levels of selenium, zinc, copper, and cardiac troponin I in serum of patients with acute coronary syndrome. Biol Trace Elem Res 154(3):352–356.  https://doi.org/10.1007/s12011-013-9754-0 PubMedCrossRefGoogle Scholar
  8. 8.
    Prasad AS (2014) Impact of the discovery of human zinc deficiency on health. J Trace Elem Med Biol 28(4):357–363.  https://doi.org/10.1016/j.jtemb.2014.09.002 PubMedCrossRefGoogle Scholar
  9. 9.
    Chen XP, Zhang YQ, Tong YP, Xue YF, Liu DY, Zhang W, Deng Y, Meng QF, Yue SC, Yan P, Cui ZL, Shi XJ, Guo SW, Sun YX, Ye YL, Wang ZH, Jia LL, Ma WQ, He MR, Zhang XY, Kou CL, Li YT, Tan DS, Cakmak I, Zhang FS, Zou CQ (2017) Harvesting more grain zinc of wheat for human health. Sci Rep 7(1):7016.  https://doi.org/10.1038/s41598-017-07484-2 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Xu Z, Zhou J (2013) Zinc and myocardial ischemia/reperfusion injury. BioMetals 26(6):863–878.  https://doi.org/10.1007/s10534-013-9671-x PubMedCrossRefGoogle Scholar
  11. 11.
    Allen LH (1998) Zinc and micronutrient supplements for children. Am J Clin Nutr 68(2 Suppl):495S–498SPubMedCrossRefGoogle Scholar
  12. 12.
    Little PJ, Bhattacharya R, Moreyra AE, Korichneva IL (2010) Zinc and cardiovascular disease. Nutrition 26(11–12):1050–1057.  https://doi.org/10.1016/j.nut.2010.03.007 PubMedCrossRefGoogle Scholar
  13. 13.
    Cabrera AJ (2015) Zinc, aging, and immunosenescence: an overview. Pathobiol Aging Age Relat Dis 5:25592.  https://doi.org/10.3402/pba.v5.25592 PubMedCrossRefGoogle Scholar
  14. 14.
    Islamoglu Y, Evliyaoglu O, Tekbas E, Cil H, Elbey MA, Atilgan Z, Kaya H, Bilik Z, Akyuz A, Alan S (2011) The relationship between serum levels of Zn and cu and severity of coronary atherosclerosis. Biol Trace Elem Res 144(1–3):436–444.  https://doi.org/10.1007/s12011-011-9123-9 PubMedCrossRefGoogle Scholar
  15. 15.
    Shokrzadeh M, Ghaemian A, Salehifar E, Aliakbari S, Saravi SS, Ebrahimi P (2009) Serum zinc and copper levels in ischemic cardiomyopathy. Biol Trace Elem Res 127(2):116–123.  https://doi.org/10.1007/s12011-008-8237-1 PubMedCrossRefGoogle Scholar
  16. 16.
    Giannoglou GD, Konstantinou DM, Kovatsi L, Chatzizisis YS, Mikhailidis DP (2010) Association of reduced zinc status with angiographically severe coronary atherosclerosis: a pilot study. Angiology 61(5):449–455.  https://doi.org/10.1177/0003319710366702 PubMedCrossRefGoogle Scholar
  17. 17.
    Eby GA, Halcomb WW (2006) High-dose zinc to terminate angina pectoris: a review and hypothesis for action by ICAM inhibition. Med Hypotheses 66(1):169–172.  https://doi.org/10.1016/j.mehy.2005.06.013 PubMedCrossRefGoogle Scholar
  18. 18.
    Efeovbokhan N, Bhattacharya SK, Ahokas RA, Sun Y, Guntaka RV, Gerling IC, Weber KT (2014) Zinc and the prooxidant heart failure phenotype. J Cardiovasc Pharmacol 64(4):393–400.  https://doi.org/10.1097/FJC.0000000000000125 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Brown MA, Thom JV, Orth GL, Cova P, Juarez J (1964) Food poisoning involving zinc contamination. Arch Environ Health 8:657–660PubMedCrossRefGoogle Scholar
  20. 20.
    Uski O, Torvela T, Sippula O, Karhunen T, Koponen H, Peraniemi S, Jalava P, Happo M, Jokiniemi J, Hirvonen MR, Lahde A (2017) In vitro toxicological effects of zinc containing nanoparticles with different physico-chemical properties. Toxicology in vitro : an international journal published in association with BIBRA 42:105–113.  https://doi.org/10.1016/j.tiv.2017.04.010 CrossRefGoogle Scholar
  21. 21.
    Romanjuk A, Lyndin M, Moskalenko R, Gortinskaya O, Lyndina Y (2016) The role of heavy metal salts in pathological biomineralization of breast cancer tissue. Advances in clinical and experimental medicine: official organ Wroclaw Medical University 25 (5):907-910. Doi: https://doi.org/10.17219/acem/34472
  22. 22.
    Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7(4):1342–1365.  https://doi.org/10.3390/ijerph7041342 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51(2):225–227.  https://doi.org/10.1093/ajcn/51.2.225 PubMedCrossRefGoogle Scholar
  24. 24.
    Tuncay E, Bitirim VC, Durak A, Carrat GR, Taylor K, Rutter GA, Turan B (2017) Hyperglycemia-induced changes in ZIP7 and ZnT7 expression cause Zn2+ release from the sarco(endo)plasmic reticulum and mediate ER-stress in the heart. Diabetes.  https://doi.org/10.2337/db16-1099
  25. 25.
    Olgar Y, Durak A, Tuncay E, Bitirim CV, Ozcinar E, Inan MB, Tokcaer-Keskin Z, Akcali KC, Akar AR, Turan B (2018) Increased free Zn(2+) correlates induction of sarco(endo)plasmic reticulum stress via altered expression levels of Zn(2+) -transporters in heart failure. J Cell Mol Med 22(3):1944–1956.  https://doi.org/10.1111/jcmm.13480 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Tuncay E, Bitirim CV, Olgar Y, Durak A, Rutter GA, Turan B (2018) Zn(2+)-transporters ZIP7 and ZnT7 play important role in progression of cardiac dysfunction via affecting sarco(endo)plasmic reticulum-mitochondria coupling in hyperglycemic cardiomyocytes. Mitochondrion.  https://doi.org/10.1016/j.mito.2017.12.011
  27. 27.
    Murakami M, Hirano T (2008) Intracellular zinc homeostasis and zinc signaling. Cancer Sci 99(8):1515–1522.  https://doi.org/10.1111/j.1349-7006.2008.00854.x PubMedCrossRefGoogle Scholar
  28. 28.
    Hara T, Takeda TA, Takagishi T, Fukue K, Kambe T, Fukada T (2017) Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci : JPS 67(2):283–301.  https://doi.org/10.1007/s12576-017-0521-4 PubMedCrossRefGoogle Scholar
  29. 29.
    Stelmach I, Grzelewski T, Bobrowska-Korzeniowska M, Kopka M, Majak P, Jerzynska J, Stelmach W, Polanska K, Sobala W, Gromadzinska J, Wasowicz W, Hanke W (2014) The role of zinc, copper, plasma glutathione peroxidase enzyme, and vitamins in the development of allergic diseases in early childhood: the Polish mother and child cohort study. Allergy Asthma Proc 35(3):227–232.  https://doi.org/10.2500/aap.2014.35.3748 PubMedCrossRefGoogle Scholar
  30. 30.
    Yang HK, Lee SH, Han K, Kang B, Lee SY, Yoon KH, Kwon HS, Park YM (2015) Lower serum zinc levels are associated with unhealthy metabolic status in normal-weight adults: the 2010 Korea National Health and nutrition examination survey. Diabetes Metab 41(4):282–290.  https://doi.org/10.1016/j.diabet.2015.03.005 PubMedCrossRefGoogle Scholar
  31. 31.
    Chabosseau P, Tuncay E, Meur G, Bellomo EA, Hessels A, Hughes S, Johnson PR, Bugliani M, Marchetti P, Turan B, Lyon AR, Merkx M, Rutter GA (2014) Mitochondrial and ER-targeted eCALWY probes reveal high levels of free Zn2+. ACS Chem Biol 9(9):2111–2120.  https://doi.org/10.1021/cb5004064 PubMedCrossRefGoogle Scholar
  32. 32.
    Turan B, Fliss H, Desilets M (1997) Oxidants increase intracellular free Zn2+ concentration in rabbit ventricular myocytes. Am J Phys 272(5 Pt 2):H2095–H2106Google Scholar
  33. 33.
    Bentley PJ, Grubb BR (1991) Effects of a zinc-deficient diet on tissue zinc concentrations in rabbits. J Anim Sci 69(12):4876–4882PubMedCrossRefGoogle Scholar
  34. 34.
    Jones MM, Schoenheit JE, Weaver AD (1979) Pretreatment and heavy metal LD50 values. Toxicol Appl Pharmacol 49(1):41–44PubMedCrossRefGoogle Scholar
  35. 35.
    Witte KK, Clark AL, Cleland JG (2001) Chronic heart failure and micronutrients. J Am Coll Cardiol 37(7):1765–1774PubMedCrossRefGoogle Scholar
  36. 36.
    Singh RB, Niaz MA, Rastogi SS, Bajaj S, Gaoli Z, Shoumin Z (1998) Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr 17(6):564–570PubMedCrossRefGoogle Scholar
  37. 37.
    Hambidge KM, Olivarasbach J, Jacobs M, Purcell S, Statland C, Poirier J (1986) Randomized study of zinc supplementation during pregnancy. Fed Proc 45(4):974–974Google Scholar
  38. 38.
    Hoang BX, Han B, Shaw DG, Nimni M (2016) Zinc as a possible preventive and therapeutic agent in pancreatic, prostate, and breast cancer. Eur J Cancer Prev 25(5):457–461.  https://doi.org/10.1097/CEJ.0000000000000194 PubMedCrossRefGoogle Scholar
  39. 39.
    Gorelik O, Almoznino-Sarafian D, Feder I, Wachsman O, Alon I, Litvinjuk V, Roshovsky M, Modai D, Cohen N (2003) Dietary intake of various nutrients in older patients with congestive heart failure. Cardiology 99(4):177–181.  https://doi.org/10.1159/000071246 PubMedCrossRefGoogle Scholar
  40. 40.
    Karagulova G, Yue Y, Moreyra A, Boutjdir M, Korichneva I (2007) Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms. J Pharmacol Exp Ther 321(2):517–525.  https://doi.org/10.1124/jpet.107.119644 PubMedCrossRefGoogle Scholar
  41. 41.
    Tuncay E, Okatan EN, Toy A, Turan B (2014) Enhancement of cellular antioxidant-defence preserves diastolic dysfunction via regulation of both diastolic Zn2+ and Ca2+ and prevention of RyR2-leak in hyperglycemic cardiomyocytes. Oxidative Med Cell Longev 2014:290381.  https://doi.org/10.1155/2014/290381 CrossRefGoogle Scholar
  42. 42.
    Tuncay E, Okatan EN, Vassort G, Turan B (2013) ss-Blocker timolol prevents arrhythmogenic Ca(2)(+) release and normalizes Ca(2)(+) and Zn(2)(+) dyshomeostasis in hyperglycemic rat heart. PloS one 8 (7):e71014.  https://doi.org/10.1371/journal.pone.0071014
  43. 43.
    Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3(7):662–674.  https://doi.org/10.1039/c1mt00011j PubMedCrossRefGoogle Scholar
  44. 44.
    Csermely P, Szamel M, Resch K, Somogyi J (1988) Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes. J Biol Chem 263(14):6487–6490PubMedGoogle Scholar
  45. 45.
    Oteiza PI (2012) Zinc and the modulation of redox homeostasis. Free Radic Biol Med 53(9):1748–1759.  https://doi.org/10.1016/j.freeradbiomed.2012.08.568 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Tatsumi T, Fliss H (1994) Hypochlorous acid mobilizes intracellular zinc in isolated rat heart myocytes. J Mol Cell Cardiol 26(4):471–479.  https://doi.org/10.1006/jmcc.1994.1058 PubMedCrossRefGoogle Scholar
  47. 47.
    Atar D, Backx PH, Appel MM, Gao WD, Marban E (1995) Excitation-transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J Biol Chem 270(6):2473–2477PubMedCrossRefGoogle Scholar
  48. 48.
    Krezel A, Maret W (2016) The biological inorganic chemistry of zinc ions. Arch Biochem Biophys 611:3–19.  https://doi.org/10.1016/j.abb.2016.04.010 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Turan B, Tuncay E (2017) Impact of labile zinc on heart function: from physiology to pathophysiology. Int J Mol Sci 18(11).  https://doi.org/10.3390/ijms18112395
  50. 50.
    Aamodt RL, Rumble WF, Johnston GS, Foster D, Henkin RI (1979) Zinc metabolism in humans after oral and intravenous administration of Zn-69m. Am J Clin Nutr 32(3):559–569.  https://doi.org/10.1093/ajcn/32.3.559 PubMedCrossRefGoogle Scholar
  51. 51.
    Gimelli A, Menichetti F, Soldati E, Liga R, Vannozzi A, Marzullo P, Bongiorni MG (2016) Relationships between cardiac innervation/perfusion imbalance and ventricular arrhythmias: impact on invasive electrophysiological parameters and ablation procedures. Eur J Nucl Med Mol Imaging 43(13):2383–2391.  https://doi.org/10.1007/s00259-016-3461-y PubMedCrossRefGoogle Scholar
  52. 52.
    Wang S, Wang B, Wang Y, Tong Q, Liu Q, Sun J, Zheng Y, Cai L (2017) Zinc prevents the development of diabetic cardiomyopathy in db/db mice. Int J Mol Sci 18(3).  https://doi.org/10.3390/ijms18030580
  53. 53.
    Perez-Clausell J, Danscher G (1985) Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study. Brain Res 337(1):91–98PubMedCrossRefGoogle Scholar
  54. 54.
    Slomianka L (1992) Neurons of origin of zinc-containing pathways and the distribution of zinc-containing boutons in the hippocampal region of the rat. Neuroscience 48(2):325–352PubMedCrossRefGoogle Scholar
  55. 55.
    Kerchner GA, Canzoniero LM, Yu SP, Ling C, Choi DW (2000) Zn2+ current is mediated by voltage-gated Ca2+ channels and enhanced by extracellular acidity in mouse cortical neurones. J Physiol 528(Pt 1):39–52PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Turan B (2003) Zinc-induced changes in ionic currents of cardiomyocytes. Biol Trace Elem Res 94(1):49–60.  https://doi.org/10.1385/bter:94:1:49 PubMedCrossRefGoogle Scholar
  57. 57.
    Alvarez-Collazo J, Diaz-Garcia CM, Lopez-Medina AI, Vassort G, Alvarez JL (2012) Zinc modulation of basal and beta-adrenergically stimulated L-type Ca2+ current in rat ventricular cardiomyocytes: consequences in cardiac diseases. Pflugers Archiv : European journal of physiology 464(5):459–470.  https://doi.org/10.1007/s00424-012-1162-3 PubMedCrossRefGoogle Scholar
  58. 58.
    Traynelis SF, Burgess MF, Zheng F, Lyuboslavsky P, Powers JL (1998) Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci 18(16):6163–6175PubMedCrossRefGoogle Scholar
  59. 59.
    Gilly WF, Armstrong CM (1982) Slowing of sodium channel opening kinetics in squid axon by extracellular zinc. The Journal of general physiology 79(6):935–964PubMedCrossRefGoogle Scholar
  60. 60.
    Gao H, Boillat A, Huang D, Liang C, Peers C, Gamper N (2017) Intracellular zinc activates KCNQ channels by reducing their dependence on phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci U S A 114(31):E6410–E6419.  https://doi.org/10.1073/pnas.1620598114 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Dineley KE, Richards LL, Votyakova TV, Reynolds IJ (2005) Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria. Mitochondrion 5(1):55–65PubMedCrossRefGoogle Scholar
  62. 62.
    Ayaz M, Turan B (2006) Selenium prevents diabetes-induced alterations in [Zn2+]i and metallothionein level of rat heart via restoration of cell redox cycle. Am J Phys Heart Circ Phys 290(3):H1071–H1080.  https://doi.org/10.1152/ajpheart.00754.2005 CrossRefGoogle Scholar
  63. 63.
    Maret W (2009) Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals. BioMetals 22(1):149–157.  https://doi.org/10.1007/s10534-008-9186-z PubMedCrossRefGoogle Scholar
  64. 64.
    Kuster GM, Lancel S, Zhang J, Communal C, Trucillo MP, Lim CC, Pfister O, Weinberg EO, Cohen RA, Liao R, Siwik DA, Colucci WS (2010) Redox-mediated reciprocal regulation of SERCA and Na+-Ca2+ exchanger contributes to sarcoplasmic reticulum Ca2+ depletion in cardiac myocytes. Free Radic Biol Med 48(9):1182–1187.  https://doi.org/10.1016/j.freeradbiomed.2010.01.038 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Bozym RA, Chimienti F, Giblin LJ, Gross GW, Korichneva I, Li Y, Libert S, Maret W, Parviz M, Frederickson CJ, Thompson RB (2010) Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp Biol Med 235(6):741–750.  https://doi.org/10.1258/ebm.2010.009258 CrossRefGoogle Scholar
  66. 66.
    Tuncay E, Bilginoglu A, Sozmen NN, Zeydanli EN, Ugur M, Vassort G, Turan B (2011) Intracellular free zinc during cardiac excitation-contraction cycle: calcium and redox dependencies. Cardiovasc Res 89(3):634–642.  https://doi.org/10.1093/cvr/cvq352 PubMedCrossRefGoogle Scholar
  67. 67.
    Tuncay E, Bitirim VC, Durak A, Carrat GRJ, Taylor KM, Rutter GA, Turan B (2017) Hyperglycemia-induced changes in ZIP7 and ZnT7 expression cause Zn(2+) release from the sarco(endo)plasmic reticulum and mediate ER stress in the heart. Diabetes 66(5):1346–1358.  https://doi.org/10.2337/db16-1099 PubMedCrossRefGoogle Scholar
  68. 68.
    Tuncay E, Turan B (2016) Intracellular Zn(2+) increase in cardiomyocytes induces both electrical and mechanical dysfunction in heart via endogenous generation of reactive nitrogen species. Biol Trace Elem Res 169(2):294–302.  https://doi.org/10.1007/s12011-015-0423-3 PubMedCrossRefGoogle Scholar
  69. 69.
    Zima AV, Blatter LA (2006) Redox regulation of cardiac calcium channels and transporters. Cardiovasc Res 71(2):310–321.  https://doi.org/10.1016/j.cardiores.2006.02.019 PubMedCrossRefGoogle Scholar
  70. 70.
    Crawford AJ, Bhattacharya SK (1987) Excessive intracellular zinc accumulation in cardiac and skeletal muscles of dystrophic hamsters. Exp Neurol 95(2):265–276PubMedCrossRefGoogle Scholar
  71. 71.
    Kamalov G, Ahokas RA, Zhao W, Zhao T, Shahbaz AU, Johnson PL, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2010) Uncoupling the coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria seen in aldosteronism. J Cardiovasc Pharmacol 55(3):248–254.  https://doi.org/10.1097/FJC.0b013e3181cf0090 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Billur D, Tuncay E, Okatan EN, Olgar Y, Durak AT, Degirmenci S, Can B, Turan B (2016) Interplay between cytosolic free Zn2+ and mitochondrion morphological changes in rat ventricular cardiomyocytes. Biol Trace Elem Res 174(1):177–188.  https://doi.org/10.1007/s12011-016-0704-5 PubMedCrossRefGoogle Scholar
  73. 73.
    Wu W, Bromberg PA, Samet JM (2013) Zinc ions as effectors of environmental oxidative lung injury. Free Radic Biol Med 65:57–69.  https://doi.org/10.1016/j.freeradbiomed.2013.05.048 PubMedCrossRefGoogle Scholar
  74. 74.
    Kamalov G, Deshmukh PA, Baburyan NY, Gandhi MS, Johnson PL, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2009) Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. J Cardiovasc Pharmacol 53(5):414–423.  https://doi.org/10.1097/FJC.0b013e3181a15e77 PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Maret W (2013) Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 4(1):82–91.  https://doi.org/10.3945/an.112.003038 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Cicek FA, Toy A, Tuncay E, Can B, Turan B (2014) Beta-blocker timolol alleviates hyperglycemia-induced cardiac damage via inhibition of endoplasmic reticulum stress. J Bioenerg Biomembr 46(5):377–387.  https://doi.org/10.1007/s10863-014-9568-6 PubMedCrossRefGoogle Scholar
  77. 77.
    Degirmenci S, Olgar Y, Durak A, Tuncay E, Turan B (2018) Cytosolic increased labile Zn2+ contributes to arrhythmogenic action potentials in left ventricular cardiomyocytes through protein thiol oxidation and cellular ATP depletion. J Trace Elem Med Biol 48:202–212.  https://doi.org/10.1016/j.jtemb.2018.04.014
  78. 78.
    Rancic Z, Radak D, Stojanovic D (2002) Early detection of asymptomatic carotid disease in patients with obliterative arteriosclerosis of the lower extremities. Srp Arh Celok Lek 130(7–8):258–264PubMedCrossRefGoogle Scholar
  79. 79.
    Etzion Y, Ganiel A, Beharier O, Shalev A, Novack V, Volvich L, Abrahamov D, Matsa M, Sahar G, Moran A, Katz A (2008) Correlation between atrial ZnT-1 expression and atrial fibrillation in humans: a pilot study. J Cardiovasc Electrophysiol 19(2):157–164.  https://doi.org/10.1111/j.1540-8167.2007.01008.x PubMedCrossRefGoogle Scholar
  80. 80.
    Fukada T, Kambe T (2018) Welcome to the world of zinc signaling. Int J Mol Sci 19(3).  https://doi.org/10.3390/ijms19030785
  81. 81.
    Fukunaka A, Fujitani Y (2018) Role of zinc homeostasis in the pathogenesis of diabetes and obesity. Int J Mol Sci 19(2).  https://doi.org/10.3390/ijms19020476
  82. 82.
    Lin W, Li D, Cheng L, Li L, Liu F, Hand NJ, Epstein JA, Rader DJ (2018) Zinc transporter Slc39a8 is essential for cardiac ventricular compaction. J Clin Invest 128(2):826–833.  https://doi.org/10.1172/JCI96993 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Bin BH, Bhin J, Takaishi M, Toyoshima KE, Kawamata S, Ito K, Hara T, Watanabe T, Irie T, Takagishi T, Lee SH, Jung HS, Rho S, Seo J, Choi DH, Hwang D, Koseki H, Ohara O, Sano S, Tsuji T, Mishima K, Fukada T (2017) Requirement of zinc transporter ZIP10 for epidermal development: implication of the ZIP10-p63 axis in epithelial homeostasis. Proc Natl Acad Sci U S A 114(46):12243–12248.  https://doi.org/10.1073/pnas.1710726114 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Maret W (2017) Zinc in cellular regulation: the nature and significance of "zinc signals". Int J Mol Sci 18(11).  https://doi.org/10.3390/ijms18112285
  85. 85.
    Kambe T, Matsunaga M, Takeda TA (2017) Understanding the contribution of zinc transporters in the function of the early secretory pathway. Int J Mol Sci 18(10).  https://doi.org/10.3390/ijms18102179
  86. 86.
    Takagishi T, Hara T, Fukada T (2017) Recent advances in the role of SLC39A/ZIP zinc transporters in vivo. Int J Mol Sci 18(12).  https://doi.org/10.3390/ijms18122708
  87. 87.
    Perez Y, Shorer Z, Liani-Leibson K, Chabosseau P, Kadir R, Volodarsky M, Halperin D, Barber-Zucker S, Shalev H, Schreiber R, Gradstein L, Gurevich E, Zarivach R, Rutter GA, Landau D, Birk OS (2017) SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome. Brain 140(4):928–939.  https://doi.org/10.1093/brain/awx013 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Kambe T, Fukada T, Toyokuni S (2016) Editorial: the cutting edge of zinc biology. Arch Biochem Biophys 611:1–2.  https://doi.org/10.1016/j.abb.2016.09.006 PubMedCrossRefGoogle Scholar
  89. 89.
    Hojyo S, Fukada T (2016) Zinc transporters and signaling in physiology and pathogenesis. Arch Biochem Biophys 611:43–50.  https://doi.org/10.1016/j.abb.2016.06.020 PubMedCrossRefGoogle Scholar
  90. 90.
    Bin BH, Bhin J, Seo J, Kim SY, Lee E, Park K, Choi DH, Takagishi T, Hara T, Hwang D, Koseki H, Asada Y, Shimoda S, Mishima K, Fukada T (2017) Requirement of zinc transporter SLC39A7/ZIP7 for dermal development to fine-tune endoplasmic reticulum function by Regulating protein disulfide isomerase. J Invest Dermatol 137(8):1682–1691.  https://doi.org/10.1016/j.jid.2017.03.031 PubMedCrossRefGoogle Scholar
  91. 91.
    Chabosseau P, Rutter GA (2016) Zinc and diabetes. Arch Biochem Biophys 611:79–85.  https://doi.org/10.1016/j.abb.2016.05.022 PubMedCrossRefGoogle Scholar
  92. 92.
    Kambe T, Tsuji T, Hashimoto A, Itsumura N (2015) The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol Rev 95(3):749–784.  https://doi.org/10.1152/physrev.00035.2014 PubMedCrossRefGoogle Scholar
  93. 93.
    Lichten LA, Cousins RJ (2009) Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr 29:153–176.  https://doi.org/10.1146/annurev-nutr-033009-083312 PubMedCrossRefGoogle Scholar
  94. 94.
    Norouzi S, Adulcikas J, Sohal SS, Myers S (2017) Zinc transporters and insulin resistance: therapeutic implications for type 2 diabetes and metabolic disease. J Biomed Sci 24(1):87.  https://doi.org/10.1186/s12929-017-0394-0 PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Ellis CD, Wang F, MacDiarmid CW, Clark S, Lyons T, Eide DJ (2004) Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J Cell Biol 166(3):325–335.  https://doi.org/10.1083/jcb.200401157 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Huang L, Kirschke CP, Zhang Y, Yu YY (2005) The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J Biol Chem 280(15):15456–15463.  https://doi.org/10.1074/jbc.M412188200 PubMedCrossRefGoogle Scholar
  97. 97.
    Hogstrand C, Kille P, Nicholson RI, Taylor KM (2009) Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med 15(3):101–111.  https://doi.org/10.1016/j.molmed.2009.01.004 PubMedCrossRefGoogle Scholar
  98. 98.
    Taylor KM, Vichova P, Jordan N, Hiscox S, Hendley R, Nicholson RI (2008) ZIP7-mediated intracellular zinc transport contributes to aberrant growth factor signaling in antihormone-resistant breast cancer cells. Endocrinology 149(10):4912–4920.  https://doi.org/10.1210/en.2008-0351 PubMedCrossRefGoogle Scholar
  99. 99.
    Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P (2012) Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Science signaling 5 (210):ra11.  https://doi.org/10.1126/scisignal.2002585
  100. 100.
    Liu Y, Batchuluun B, Ho L, Zhu D, Prentice KJ, Bhattacharjee A, Zhang M, Pourasgari F, Hardy AB, Taylor KM, Gaisano H, Dai FF, Wheeler MB (2015) Characterization of zinc influx transporters (ZIPs) in pancreatic beta cells: roles in regulating cytosolic zinc homeostasis and insulin secretion. J Biol Chem 290(30):18757–18769.  https://doi.org/10.1074/jbc.M115.640524 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Grubman A, Lidgerwood GE, Duncan C, Bica L, Tan JL, Parker SJ, Caragounis A, Meyerowitz J, Volitakis I, Moujalled D, Liddell JR, Hickey JL, Horne M, Longmuir S, Koistinaho J, Donnelly PS, Crouch PJ, Tammen I, White AR, Kanninen KM (2014) Deregulation of subcellular biometal homeostasis through loss of the metal transporter, Zip7, in a childhood neurodegenerative disorder. Acta Neuropathol Commun 2:25.  https://doi.org/10.1186/2051-5960-2-25 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Groth C, Sasamura T, Khanna MR, Whitley M, Fortini ME (2013) Protein trafficking abnormalities in Drosophila tissues with impaired activity of the ZIP7 zinc transporter catsup. Development 140(14):3018–3027.  https://doi.org/10.1242/dev.088336 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kirschke CP, Huang L (2003) ZnT7, a novel mammalian zinc transporter, accumulates zinc in the Golgi apparatus. J Biol Chem 278(6):4096–4102.  https://doi.org/10.1074/jbc.M207644200 PubMedCrossRefGoogle Scholar
  104. 104.
    Suzuki T, Ishihara K, Migaki H, Matsuura W, Kohda A, Okumura K, Nagao M, Yamaguchi-Iwai Y, Kambe T (2005) Zinc transporters, ZnT5 and ZnT7, are required for the activation of alkaline phosphatases, zinc-requiring enzymes that are glycosylphosphatidylinositol-anchored to the cytoplasmic membrane. J Biol Chem 280(1):637–643.  https://doi.org/10.1074/jbc.M411247200 PubMedCrossRefGoogle Scholar
  105. 105.
    Wang X, Wang ZY, Gao HL, Danscher G, Huang L (2006) Localization of ZnT7 and zinc ions in mouse retina--immunohistochemistry and selenium autometallography. Brain Res Bull 71(1–3):91–96.  https://doi.org/10.1016/j.brainresbull.2006.08.002 PubMedCrossRefGoogle Scholar
  106. 106.
    Gao HL, Feng WY, Li XL, Xu H, Huang L, Wang ZY (2009) Golgi apparatus localization of ZNT7 in the mouse cerebellum. Histol Histopathol 24(5):567–572.  https://doi.org/10.14670/HH-24.567 PubMedCrossRefGoogle Scholar
  107. 107.
    Liang D, Xiang L, Yang M, Zhang X, Guo B, Chen Y, Yang L, Cao J (2013) ZnT7 can protect MC3T3-E1 cells from oxidative stress-induced apoptosis via PI3K/Akt and MAPK/ERK signaling pathways. Cell Signal 25(5):1126–1135.  https://doi.org/10.1016/j.cellsig.2013.02.003 PubMedCrossRefGoogle Scholar
  108. 108.
    Klein C, Sunahara RK, Hudson TY, Heyduk T, Howlett AC (2002) Zinc inhibition of cAMP signaling. J Biol Chem 277(14):11859–11865.  https://doi.org/10.1074/jbc.M108808200 PubMedCrossRefGoogle Scholar
  109. 109.
    Baltas LG, Karczewski P, Bartel S, Krause EG (1997) The endogenous cardiac sarcoplasmic reticulum Ca2+/calmodulin-dependent kinase is activated in response to beta-adrenergic stimulation and becomes Ca2+-independent in intact beating hearts. FEBS Lett 409(2):131–136PubMedCrossRefGoogle Scholar
  110. 110.
    Kambe T, Hashimoto A, Fujimoto S (2014) Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol Life Sci: CMLS 71(17):3281–3295.  https://doi.org/10.1007/s00018-014-1617-0 PubMedCrossRefGoogle Scholar
  111. 111.
    Jeong J, Walker JM, Wang F, Park JG, Palmer AE, Giunta C, Rohrbach M, Steinmann B, Eide DJ (2012) Promotion of vesicular zinc efflux by ZIP13 and its implications for spondylocheiro dysplastic Ehlers-Danlos syndrome. Proc Natl Acad Sci U S A 109(51):E3530–E3538.  https://doi.org/10.1073/pnas.1211775110 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Rungby J (2010) Zinc, zinc transporters and diabetes. Diabetologia 53(8):1549–1551.  https://doi.org/10.1007/s00125-010-1793-x PubMedCrossRefGoogle Scholar
  113. 113.
    Rutter GA (2010) Think zinc: new roles for zinc in the control of insulin secretion. Islets 2(1):49–50.  https://doi.org/10.4161/isl.2.1.10259 PubMedCrossRefGoogle Scholar
  114. 114.
    Rutter GA, Chimienti F (2015) SLC30A8 mutations in type 2 diabetes. Diabetologia 58(1):31–36.  https://doi.org/10.1007/s00125-014-3405-7 PubMedCrossRefGoogle Scholar
  115. 115.
    Hamada H, Suzuki M, Yuasa S, Mimura N, Shinozuka N, Takada Y, Suzuki M, Nishino T, Nakaya H, Koseki H, Aoe T (2004) Dilated cardiomyopathy caused by aberrant endoplasmic reticulum quality control in mutant KDEL receptor transgenic mice. Mol Cell Biol 24(18):8007–8017.  https://doi.org/10.1128/MCB.24.18.8007-8017.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Gramolini AO, Kislinger T, Alikhani-Koopaei R, Fong V, Thompson NJ, Isserlin R, Sharma P, Oudit GY, Trivieri MG, Fagan A, Kannan A, Higgins DG, Huedig H, Hess G, Arab S, Seidman JG, Seidman CE, Frey B, Perry M, Backx PH, Liu PP, MacLennan DH, Emili A (2008) Comparative proteomics profiling of a phospholamban mutant mouse model of dilated cardiomyopathy reveals progressive intracellular stress responses. Mol Cell Proteomics : MCP 7(3):519–533.  https://doi.org/10.1074/mcp.M700245-MCP200 PubMedCrossRefGoogle Scholar
  117. 117.
    Dally S, Monceau V, Corvazier E, Bredoux R, Raies A, Bobe R, del Monte F, Enouf J (2009) Compartmentalized expression of three novel sarco/endoplasmic reticulum Ca2+ATPase 3 isoforms including the switch to ER stress, SERCA3f, in non-failing and failing human heart. Cell Calcium 45(2):144–154.  https://doi.org/10.1016/j.ceca.2008.08.002 PubMedCrossRefGoogle Scholar
  118. 118.
    Teng X, Song J, Zhang G, Cai Y, Yuan F, Du J, Tang C, Qi Y (2011) Inhibition of endoplasmic reticulum stress by intermedin(1-53) protects against myocardial injury through a PI3 kinase-Akt signaling pathway. J Mol Med 89(12):1195–1205.  https://doi.org/10.1007/s00109-011-0808-5 PubMedCrossRefGoogle Scholar
  119. 119.
    Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26(8):504–510PubMedCrossRefGoogle Scholar
  120. 120.
    Lee AS (1992) Mammalian stress response: induction of the glucose-regulated protein family. Curr Opin Cell Biol 4(2):267–273PubMedCrossRefGoogle Scholar
  121. 121.
    Wang M, Xu Q, Yu J, Yuan M (2010) The putative Arabidopsis zinc transporter ZTP29 is involved in the response to salt stress. Plant Mol Biol 73(4–5):467–479.  https://doi.org/10.1007/s11103-010-9633-4 PubMedCrossRefGoogle Scholar
  122. 122.
    Kumanovics A, Poruk KE, Osborn KA, Ward DM, Kaplan J (2006) YKE4 (YIL023C) encodes a bidirectional zinc transporter in the endoplasmic reticulum of Saccharomyces cerevisiae. J Biol Chem 281(32):22566–22574.  https://doi.org/10.1074/jbc.M604730200 PubMedCrossRefGoogle Scholar
  123. 123.
    Haase H, Rink L (2014) Multiple impacts of zinc on immune function. Metallomics : integrated biometal science 6(7):1175–1180.  https://doi.org/10.1039/c3mt00353a CrossRefGoogle Scholar
  124. 124.
    Yang J, Zhang Y, Cui X, Yao W, Yu X, Cen P, Hodges SE, Fisher WE, Brunicardi FC, Chen C, Yao Q, Li M (2013) Gene profile identifies zinc transporters differentially expressed in normal human organs and human pancreatic cancer. Curr Mol Med 13(3):401–409PubMedPubMedCentralGoogle Scholar
  125. 125.
    Bellomo EA, Meur G, Rutter GA (2011) Glucose regulates free cytosolic Zn(2)(+) concentration, Slc39 (ZiP), and metallothionein gene expression in primary pancreatic islet beta-cells. J Biol Chem 286(29):25778–25789.  https://doi.org/10.1074/jbc.M111.246082 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Chen AC, Burr L, McGuckin MA (2018) Oxidative and endoplasmic reticulum stress in respiratory disease. Clinical & translational immunology 7(6):e1019.  https://doi.org/10.1002/cti2.1019 CrossRefGoogle Scholar
  127. 127.
    Ghemrawi R, Battaglia-Hsu SF, Arnold C (2018) Endoplasmic reticulum stress in metabolic disorders. Cells 7(6).  https://doi.org/10.3390/cells7060063
  128. 128.
    Yang X, Shao H, Liu W, Gu W, Shu X, Mo Y, Chen X, Zhang Q, Jiang M (2015) Endoplasmic reticulum stress and oxidative stress are involved in ZnO nanoparticle-induced hepatotoxicity. Toxicol Lett 234(1):40–49.  https://doi.org/10.1016/j.toxlet.2015.02.004 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Sun Q, Zhong W, Zhang W, Li Q, Sun X, Tan X, Sun X, Dong D, Zhou Z (2015) Zinc deficiency mediates alcohol-induced apoptotic cell death in the liver of rats through activating ER and mitochondrial cell death pathways. Am J Physiol Gastrointest Liver Physiol 308(9):G757–G766.  https://doi.org/10.1152/ajpgi.00442.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Liang T, Zhang Q, Sun W, Xin Y, Zhang Z, Tan Y, Zhou S, Zhang C, Cai L, Lu X, Cheng M (2015) Zinc treatment prevents type 1 diabetes-induced hepatic oxidative damage, endoplasmic reticulum stress, and cell death, and even prevents possible steatohepatitis in the OVE26 mouse model: important role of metallothionein. Toxicol Lett 233(2):114–124.  https://doi.org/10.1016/j.toxlet.2015.01.010 PubMedCrossRefGoogle Scholar
  131. 131.
    Wang G, Huang H, Zheng H, He Y, Zhang Y, Xu Z, Zhang L, Xi J (2016) Zn(2+) and mPTP mediate endoplasmic reticulum stress inhibition-induced Cardioprotection against myocardial ischemia/reperfusion injury. Biol Trace Elem Res 174(1):189–197.  https://doi.org/10.1007/s12011-016-0707-2 PubMedCrossRefGoogle Scholar
  132. 132.
    Hadj Abdallah N, Baulies A, Bouhlel A, Bejaoui M, Zaouali MA, Ben Mimouna S, Messaoudi I, Fernandez-Checa JC, Garcia Ruiz C, Ben Abdennebi H (2018) Zinc mitigates renal ischemia-reperfusion injury in rats by modulating oxidative stress, endoplasmic reticulum stress, and autophagy. J Cell Physiol.  https://doi.org/10.1002/jcp.26747
  133. 133.
    Sun Q, Li Q, Zhong W, Zhang J, Sun X, Tan X, Yin X, Sun X, Zhang X, Zhou Z (2014) Dysregulation of hepatic zinc transporters in a mouse model of alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 307(3):G313–G322.  https://doi.org/10.1152/ajpgi.00081.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Aydemir TB, Chang SM, Guthrie GJ, Maki AB, Ryu MS, Karabiyik A, Cousins RJ (2012) Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia). PLoS One 7(10):e48679.  https://doi.org/10.1371/journal.pone.0048679 PubMedCrossRefGoogle Scholar
  135. 135.
    Taylor KM, Morgan HE, Johnson A, Nicholson RI (2004) Structure-function analysis of HKE4, a member of the new LIV-1 subfamily of zinc transporters. The Biochemical journal 377(Pt 1):131–139.  https://doi.org/10.1042/BJ20031183 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Kim MH, Aydemir TB, Kim J, Cousins RJ (2017) Hepatic ZIP14-mediated zinc transport is required for adaptation to endoplasmic reticulum stress. Proc Natl Acad Sci U S A 114(29):E5805–E5814.  https://doi.org/10.1073/pnas.1704012114 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Lee S, Zhou Y, Gill DL, Kelleher SL (2018) A genetic variant in SLC30A2 causes breast dysfunction during lactation by inducing ER stress, oxidative stress and epithelial barrier defects. Sci Rep 8(1):3542.  https://doi.org/10.1038/s41598-018-21505-8 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Sunuwar L, Medini M, Cohen L, Sekler I, Hershfinkel M (2016) The zinc sensing receptor, ZnR/GPR39, triggers metabotropic calcium signalling in colonocytes and regulates occludin recovery in experimental colitis. Philos Trans R Soc Lond Ser B Biol Sci 371(1700).  https://doi.org/10.1098/rstb.2015.0420
  139. 139.
    Cohen L, Sekler I, Hershfinkel M (2014) The zinc sensing receptor, ZnR/GPR39, controls proliferation and differentiation of colonocytes and thereby tight junction formation in the colon. Cell Death Dis 5:e1307.  https://doi.org/10.1038/cddis.2014.262 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Hershfinkel M (2018) The zinc sensing receptor, ZnR/GPR39, in health and disease. Int J Mol Sci 19(2).  https://doi.org/10.3390/ijms19020439
  141. 141.
    Sunuwar L, Gilad D, Hershfinkel M (2017) The zinc sensing receptor, ZnR/GPR39, in health and disease. Front Biosci 22:1469–1492CrossRefGoogle Scholar
  142. 142.
    Kurita H, Okuda R, Yokoo K, Inden M, Hozumi I (2016) Protective roles of SLC30A3 against endoplasmic reticulum stress via ERK1/2 activation. Biochem Biophys Res Commun 479(4):853–859.  https://doi.org/10.1016/j.bbrc.2016.09.119 PubMedCrossRefGoogle Scholar
  143. 143.
    Karthikeyan B, Arun A, Harini L, Sundar K, Kathiresan T (2016) Role of ZnS nanoparticles on endoplasmic reticulum stress-mediated apoptosis in retinal pigment epithelial cells. Biol Trace Elem Res 170(2):390–400.  https://doi.org/10.1007/s12011-015-0493-2 PubMedCrossRefGoogle Scholar
  144. 144.
    Huang L, Kirschke CP, Lay YA, Levy LB, Lamirande DE, Zhang PH (2012) Znt7-null mice are more susceptible to diet-induced glucose intolerance and insulin resistance. J Biol Chem 287(40):33883–33896.  https://doi.org/10.1074/jbc.M111.309666 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Bafaro E, Liu Y, Xu Y, Dempski RE (2017) The emerging role of zinc transporters in cellular homeostasis and cancer Signal transduction and targeted therapy 2. doi: https://doi.org/10.1038/sigtrans.2017.29
  146. 146.
    Pan Z, Choi S, Ouadid-Ahidouch H, Yang JM, Beattie JH, Korichneva I (2017) Zinc transporters and dysregulated channels in cancers. Front Biosci 22:623–643CrossRefGoogle Scholar
  147. 147.
    Huang C, Cui X, Sun X, Yang J, Li M (2016) Zinc transporters are differentially expressed in human non-small cell lung cancer. Oncotarget 7 (41):66935-66943. Doi: https://doi.org/10.18632/oncotarget.11884
  148. 148.
    Singh CK, Pitschmann A, Ahmad N (2014) Resveratrol-zinc combination for prostate cancer management. Cell Cycle 13(12):1867–1874.  https://doi.org/10.4161/cc.29334 PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Costello LC, Franklin RB (2012) Cytotoxic/tumor suppressor role of zinc for the treatment of cancer: an enigma and an opportunity. Expert Rev Anticancer Ther 12(1):121–128.  https://doi.org/10.1586/era.11.190 PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Michalczyk AA, Allen J, Blomeley RC, Ackland ML (2002) Constitutive expression of hZnT4 zinc transporter in human breast epithelial cells. Biochem J 364(Pt 1):105–113PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Taylor KM, Morgan HE, Johnson A, Hadley LJ, Nicholson RI (2003) Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters. Biochem J 375(Pt 1):51–59.  https://doi.org/10.1042/BJ20030478 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Nimmanon T, Ziliotto S, Morris S, Flanagan L, Taylor KM (2017) Phosphorylation of zinc channel ZIP7 drives MAPK, PI3K and mTOR growth and proliferation signalling. Metallomics 9(5):471–481.  https://doi.org/10.1039/c6mt00286b PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Kagara N, Tanaka N, Noguchi S, Hirano T (2007) Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells. Cancer Sci 98(5):692–697.  https://doi.org/10.1111/j.1349-7006.2007.00446.x PubMedCrossRefGoogle Scholar
  154. 154.
    Matsui C, Takatani-Nakase T, Hatano Y, Kawahara S, Nakase I, Takahashi K (2017) Zinc and its transporter ZIP6 are key mediators of breast cancer cell survival under high glucose conditions. FEBS Lett 591(20):3348–3359.  https://doi.org/10.1002/1873-3468.12797 PubMedCrossRefGoogle Scholar
  155. 155.
    Kasper G, Weiser AA, Rump A, Sparbier K, Dahl E, Hartmann A, Wild P, Schwidetzky U, Castanos-Velez E, Lehmann K (2005) Expression levels of the putative zinc transporter LIV-1 are associated with a better outcome of breast cancer patients. Int J Cancer 117(6):961–973.  https://doi.org/10.1002/ijc.21235 PubMedCrossRefGoogle Scholar
  156. 156.
    Shen H, Qin H, Guo J (2009) Concordant correlation of LIV-1 and E-cadherin expression in human breast cancer cell MCF-7. Mol Biol Rep 36(4):653–659.  https://doi.org/10.1007/s11033-008-9225-4 PubMedCrossRefGoogle Scholar
  157. 157.
    Alam S, Kelleher SL (2012) Cellular mechanisms of zinc dysregulation: a perspective on zinc homeostasis as an etiological factor in the development and progression of breast cancer. Nutrients 4(8):875–903.  https://doi.org/10.3390/nu4080875 PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Larner F, Woodley LN, Shousha S, Moyes A, Humphreys-Williams E, Strekopytov S, Halliday AN, Rehkamper M, Coombes RC (2015) Zinc isotopic compositions of breast cancer tissue. Metallomics 7(1):112–117.  https://doi.org/10.1039/c4mt00260a PubMedCrossRefGoogle Scholar
  159. 159.
    Liuzzi JP, Bobo JA, Cui L, McMahon RJ, Cousins RJ (2003) Zinc transporters 1, 2 and 4 are differentially expressed and localized in rats during pregnancy and lactation. J Nutr 133(2):342–351.  https://doi.org/10.1093/jn/133.2.342 PubMedCrossRefGoogle Scholar
  160. 160.
    Bitirim CV, Tuncay E, Turan B (2018) Demonstration of subcellular migration of CK2alpha localization from nucleus to sarco(endo)plasmic reticulum in mammalian cardiomyocytes under hyperglycemia. Mol Cell Biochem 443(1–2):25–36.  https://doi.org/10.1007/s11010-017-3207-6 PubMedCrossRefGoogle Scholar
  161. 161.
    Li M, Zhang Y, Liu Z, Bharadwaj U, Wang H, Wang X, Zhang S, Liuzzi JP, Chang SM, Cousins RJ, Fisher WE, Brunicardi FC, Logsdon CD, Chen C, Yao Q (2007) Aberrant expression of zinc transporter ZIP4 (SLC39A4) significantly contributes to human pancreatic cancer pathogenesis and progression. Proc Natl Acad Sci U S A 104(47):18636–18641PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Costello LC, Levy BA, Desouki MM, Zou J, Bagasra O, Johnson LA, Hanna N, Franklin RB (2011) Decreased zinc and downregulation of ZIP3 zinc uptake transporter in the development of pancreatic adenocarcinoma. Cancer Biol Ther 12(4):297–303PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Costello LC, Franklin RB (2016) A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch Biochem Biophys 611:100–112.  https://doi.org/10.1016/j.abb.2016.04.014 PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Huang L, Kirschke CP, Zhang Y (2006) Decreased intracellular zinc in human tumorigenic prostate epithelial cells: a possible role in prostate cancer progression. Cancer Cell Int 6:10.  https://doi.org/10.1186/1475-2867-6-10 PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Desouki MM, Geradts J, Milon B, Franklin RB, Costello LC (2007) hZip2 and hZip3 zinc transporters are down regulated in human prostate adenocarcinomatous glands. Mol Cancer 6:37.  https://doi.org/10.1186/1476-4598-6-37 PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Costello LC, Franklin RB, Feng P, Tan M, Bagasra O (2005) Zinc and prostate cancer: a critical scientific, medical, and public interest issue (United States). Cancer Causes Control : CCC 16(8):901–915.  https://doi.org/10.1007/s10552-005-2367-y PubMedCrossRefGoogle Scholar
  167. 167.
    Costello LC, Franklin RB (2006) The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer 5:17.  https://doi.org/10.1186/1476-4598-5-17 PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Chen QG, Zhang Z, Yang Q, Shan GY, Yu XY, Kong CZ (2012) The role of zinc transporter ZIP4 in prostate carcinoma. Urol Oncol 30(6):906–911.  https://doi.org/10.1016/j.urolonc.2010.11.010 PubMedCrossRefGoogle Scholar
  169. 169.
    Hasumi M, Suzuki K, Matsui H, Koike H, Ito K, Yamanaka H (2003) Regulation of metallothionein and zinc transporter expression in human prostate cancer cells and tissues. Cancer Lett 200(2):187–195PubMedCrossRefGoogle Scholar
  170. 170.
    Henshall SM, Afar DE, Rasiah KK, Horvath LG, Gish K, Caras I, Ramakrishnan V, Wong M, Jeffry U, Kench JG, Quinn DI, Turner JJ, Delprado W, Lee CS, Golovsky D, Brenner PC, O'Neill GF, Kooner R, Stricker PD, Grygiel JJ, Mack DH, Sutherland RL (2003) Expression of the zinc transporter ZnT4 is decreased in the progression from early prostate disease to invasive prostate cancer. Oncogene 22(38):6005–6012.  https://doi.org/10.1038/sj.onc.1206797 PubMedCrossRefGoogle Scholar
  171. 171.
    Singh CK, Malas KM, Tydrick C, Siddiqui IA, Iczkowski KA, Ahmad N (2016) Analysis of zinc-exporters expression in prostate cancer. Sci Rep 6:36772.  https://doi.org/10.1038/srep36772 PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Sheng N, Yan L, You W, Tan G, Gong J, Chen H, Yang Y, Hu L, Wang Z (2017) Knockdown of SLC39A7 inhibits cell growth and induces apoptosis in human colorectal cancer cells. Acta Biochim Biophys Sin 49(10):926–934.  https://doi.org/10.1093/abbs/gmx094 PubMedCrossRefGoogle Scholar
  173. 173.
    Converse A, Zhang C, Thomas P (2017) Membrane androgen receptor ZIP9 induces croaker ovarian cell apoptosis via stimulatory G protein alpha subunit and MAP kinase signaling. Endocrinology 158(9):3015–3029.  https://doi.org/10.1210/en.2017-00087 PubMedCrossRefGoogle Scholar
  174. 174.
    Munnich N, Wernhart S, Hogstrand C, Schlomann U, Nimsky C, Bartsch JW (2016) Expression of the zinc importer protein ZIP9/SLC39A9 in glioblastoma cells affects phosphorylation states of p53 and GSK-3beta and causes increased cell migration. Biometals 29(6):995–1004.  https://doi.org/10.1007/s10534-016-9971-z PubMedCrossRefGoogle Scholar
  175. 175.
    Li Q, Jin J, Liu J, Wang L, He Y (2016) Knockdown of zinc transporter ZIP5 by RNA interference inhibits esophageal cancer growth in vivo. Oncol Res 24(3):205–214.  https://doi.org/10.3727/096504016X14648701447896 PubMedCrossRefGoogle Scholar
  176. 176.
    Costello LC, Franklin RB (2017) Decreased zinc in the development and progression of malignancy: an important common relationship and potential for prevention and treatment of carcinomas. Expert Opin Ther Targets 21(1):51–66.  https://doi.org/10.1080/14728222.2017.1265506 PubMedCrossRefGoogle Scholar
  177. 177.
    Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME (2012) Zinc and human health: an update. Arch Toxicol 86(4):521–534.  https://doi.org/10.1007/s00204-011-0775-1 PubMedCrossRefGoogle Scholar
  178. 178.
    Oliveira BF, Nogueira-Machado JA, Chaves MM (2010) The role of oxidative stress in the aging process. Sci World J 10:1121–1128.  https://doi.org/10.1100/tsw.2010.94 CrossRefGoogle Scholar
  179. 179.
    Violi F, Loffredo L, Carnevale R, Pignatelli P, Pastori D (2017) Atherothrombosis and oxidative stress: mechanisms and management in elderly. Antioxid Redox Signal 27(14):1083–1124.  https://doi.org/10.1089/ars.2016.6963 PubMedCrossRefGoogle Scholar
  180. 180.
    Prasad AS (2013) Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr 4(2):176–190.  https://doi.org/10.3945/an.112.003210 PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Prasad AS (2009) Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metabolic care 12(6):646–652.  https://doi.org/10.1097/MCO.0b013e3283312956 CrossRefGoogle Scholar
  182. 182.
    Szewczyk B (2013) Zinc homeostasis and neurodegenerative disorders. Front Aging Neurosci 5:33.  https://doi.org/10.3389/fnagi.2013.00033 PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Brewer GJ, Kanzer SH, Zimmerman EA, Molho ES, Celmins DF, Heckman SM, Dick R (2010) Subclinical zinc deficiency in Alzheimer's disease and Parkinson's disease. Am J Alzheimer Dis Other Demen 25(7):572–575.  https://doi.org/10.1177/1533317510382283 CrossRefGoogle Scholar
  184. 184.
    Brewer GJ, Kaur S (2013) Zinc deficiency and zinc therapy efficacy with reduction of serum free copper in Alzheimer's disease. Int J Alzheimers Dis 2013:586365.  https://doi.org/10.1155/2013/586365 PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Aliani M, Udenigwe CC, Girgih AT, Pownall TL, Bugera JL, Eskin MN (2013) Zinc deficiency and taste perception in the elderly. Crit Rev Food Sci Nutr 53(3):245–250.  https://doi.org/10.1080/10408398.2010.527023 PubMedCrossRefGoogle Scholar
  186. 186.
    Cannizzo ES, Clement CC, Sahu R, Follo C, Santambrogio L (2011) Oxidative stress, inflamm-aging and immunosenescence. J Proteome 74(11):2313–2323.  https://doi.org/10.1016/j.jprot.2011.06.005 CrossRefGoogle Scholar
  187. 187.
    Bao B, Prasad AS, Beck FW, Snell D, Suneja A, Sarkar FH, Doshi N, Fitzgerald JT, Swerdlow P (2008) Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients. Transl Res: J Lab Clin Med 152(2):67–80.  https://doi.org/10.1016/j.trsl.2008.06.001 CrossRefGoogle Scholar
  188. 188.
    Mazzatti DJ, Mocchegiani E, Powell JR (2008) Age-specific modulation of genes involved in lipid and cholesterol homeostasis by dietary zinc. Rejuvenation Res 11(2):281–285.  https://doi.org/10.1089/rej.2007.0610 PubMedCrossRefGoogle Scholar
  189. 189.
    De Paula RC, Aneni EC, Costa AP, Figueiredo VN, Moura FA, Freitas WM, Quaglia LA, Santos SN, Soares AA, Nadruz W, Jr., Blaha M, Blumenthal R, Agatston A, Nasir K, Sposito AC, Brazilian Study on Healthy Aging G (2014) Low zinc levels is associated with increased inflammatory activity but not with atherosclerosis, arteriosclerosis or endothelial dysfunction among the very elderly. BBA clinical 2:1–6. doi: https://doi.org/10.1016/j.bbacli.2014.07.002
  190. 190.
    Bhuiyan T, Maurer MS (2011) Heart failure with preserved ejection fraction: persistent diagnosis, therapeutic enigma. Curr Cardiovasc risk Rep 5(5):440–449.  https://doi.org/10.1007/s12170-011-0184-2 PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Upadhya B, Taffet GE, Cheng CP, Kitzman DW (2015) Heart failure with preserved ejection fraction in the elderly: scope of the problem. J Mol Cell Cardiol 83:73–87.  https://doi.org/10.1016/j.yjmcc.2015.02.025 PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1):17–31.  https://doi.org/10.1016/j.jmb.2004.02.006 PubMedCrossRefGoogle Scholar
  193. 193.
    Loffredo FS, Nikolova AP, Pancoast JR, Lee RT (2014) Heart failure with preserved ejection fraction: molecular pathways of the aging myocardium. Circ Res 115(1):97–107.  https://doi.org/10.1161/CIRCRESAHA.115.302929 PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Ferguson BS, McKinsey TA (2015) Non-sirtuin histone deacetylases in the control of cardiac aging. J Mol Cell Cardiol 83:14–20.  https://doi.org/10.1016/j.yjmcc.2015.03.010 PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Menetti F, Tohno S, Tohno Y, Azuma C, Moriwake Y, Satoh H, Minami T, Mahakkanukrauh P, Oishi T, Hayashi M (2005) Age-dependent decreases of calcium, phosphorus, sulfur, and zinc in the cardiac valves of monkeys. Biol Trace Elem Res 106(3):231–245.  https://doi.org/10.1385/BTER:106:3:231 PubMedCrossRefGoogle Scholar
  196. 196.
    Cicek FA, Tokcaer-Keskin Z, Ozcinar E, Bozkus Y, Akcali KC, Turan B (2014) Di-peptidyl peptidase-4 inhibitor sitagliptin protects vascular function in metabolic syndrome: possible role of epigenetic regulation. Mol Biol Rep 41(8):4853–4863.  https://doi.org/10.1007/s11033-014-3392-2 PubMedCrossRefGoogle Scholar
  197. 197.
    Terman A, Brunk UT (2004) Myocyte aging and mitochondrial turnover. Exp Gerontol 39(5):701–705.  https://doi.org/10.1016/j.exger.2004.01.005 PubMedCrossRefGoogle Scholar
  198. 198.
    Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASEB J : Off Publ Fed Am Soc Exp Biol 19(3):419–421.  https://doi.org/10.1096/fj.04-2622fje CrossRefGoogle Scholar
  199. 199.
    Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM (1990) Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res 67(4):871–885PubMedCrossRefGoogle Scholar
  200. 200.
    Lakatta EG, Sollott SJ, Pepe S (2001) The old heart: operating on the edge. Novartis Foundation symposium 235:172-196; discussion 196-201, 217-120Google Scholar
  201. 201.
    Yang X, Sreejayan N, Ren J (2005) Views from within and beyond: narratives of cardiac contractile dysfunction under senescence. Endocrine 26(2):127–137.  https://doi.org/10.1385/ENDO:26:2:127 PubMedCrossRefGoogle Scholar
  202. 202.
    Hacker TA, McKiernan SH, Douglas PS, Wanagat J, Aiken JM (2006) Age-related changes in cardiac structure and function in Fischer 344 x Brown Norway hybrid rats. Am J Phys Heart Circ Phys 290(1):H304–H311.  https://doi.org/10.1152/ajpheart.00290.2005 CrossRefGoogle Scholar
  203. 203.
    Preston CC, Oberlin AS, Holmuhamedov EL, Gupta A, Sagar S, Syed RH, Siddiqui SA, Raghavakaimal S, Terzic A, Jahangir A (2008) Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart. Mech Ageing Dev 129(6):304–312.  https://doi.org/10.1016/j.mad.2008.02.010 PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556.  https://doi.org/10.1083/jcb.201009094 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biophysics, Faculty of MedicineAnkara UniversityAnkaraTurkey

Personalised recommendations