Mineral Composition of Amazonian Fruits by Flame Atomic Absorption Spectrometry Using Multivariate Analysis

  • Bianca S.F. Alves
  • João B. Pereira Junior
  • Fábio I.M. Carvalho
  • Heronides A. Dantas Filho
  • Kelly G. Fernandes DantasEmail author


This study aimed to evaluate the mineral composition in native and non-native Amazonian fruits using flame atomic absorption spectrometry (FAAS) and multivariate methods, such as principal component analysis (PCA) and hierarchical cluster analysis (HCA), in order to conduct a more thorough evaluation of the original data. The accuracy was checked by certified reference material analysis (Poplar leaves) and spike experiments. The results of the analysis were in agreement with the certified values, with analytical recoveries for all analytes in an acceptable range from 82 to 113%, and relative standard deviations (RSD) were in the range of 0.2–18%. Furthermore, PCA explained 68% of the total variance, while HCA confirmed the correlations found in the PCA, allowing for the evaluation of the degree of similarity between the fruits studied. These results will be used to better understand the distribution of inorganic constituents within these Amazonian fruits.


Fruits Amazonian Inorganic constituents Flame atomic absorption spectrometry Multivariate analysis 


Funding information

The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) provided the fellowship to Bianca S. F. Alves. Research funding was also from Fundação Amazônia de Amparo a Estudos e Pesquisas do Pará (FAPESPA) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Compliance with Ethical Standards

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Conflicts of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Shanley P, Serra M, Medina G (2011) Fruit trees and useful plants in Amazonian life. FAO, CIFOR and PPI. Accessed 14 October 2017
  2. 2.
    Nascente AS, Neto CR (2005) O agronegócio da fruticultura na Amazônia: um estudo exploratório. Embrapa, RondôniaGoogle Scholar
  3. 3.
    Rufino MSM, Alves RE, Brito ES, Pérez-Jiménez J, Saura-Calixto F, Mancini-Filho J (2010) Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem 121:996–1002CrossRefGoogle Scholar
  4. 4.
    Costa JR, Mitja D (2010) Uso dos recursos vegetais por agricultores familiares de Manacapuru (AM). Acta Amaz 40(1):49–58CrossRefGoogle Scholar
  5. 5.
    Naozuka J, Vieira EC, Nascimento AN, Oliveira PV (2011) Elemental analysis of nuts and seeds by axially viewed ICP OES. Food Chem 124:1667–1672CrossRefGoogle Scholar
  6. 6.
    Rogez H, Buxant R, Mignolet E, Souza JNS, Silva EM, Larondelle Y (2004) Chemical composition of the pulp of three typical Amazonian fruits: araçá-boi (Eugenia stipitata), bacuri (Platonia insignis), and cupuaçu (Theobroma grandiflorum). Eur Food Res Technol 218:380–384CrossRefGoogle Scholar
  7. 7.
    Darnet SH, Silva LHM, Rodrigues AMC, Lins RT (2011) Nutritional composition, fatty acid and tocopherol contents of buriti (Mauritia flexuosa) and patawa (Oenocarpus bataua) fruit pulp from the Amazon region. Ciênc Tecnol Aliment 31:488–491CrossRefGoogle Scholar
  8. 8.
    Naozuka J, Oliveira PV (2007) Cu, Fe, Mn and Zn distribution in protein fractions of Brazil-nut, cupuassu seed and coconut by solid-liquid extraction and electrothermal atomic absorption spectrometry. J Braz Chem Soc 18:1547–1553CrossRefGoogle Scholar
  9. 9.
    Yuyama LKO, Aguiar JPL, Macedo SHM, Gioia T, Yuyama K, Fávaro DIT, Afonso C, Vasconcellos MBA, Cozzolino SMF (1997) Determinação dos teores de elementos minerais em alimentos convencionais e não convencionais da região Amazônica pela técnica de análise por ativação com neutrôns instrumental. Acta Amaz 27:183–196CrossRefGoogle Scholar
  10. 10.
    Barros IBI, Kinupp VF (2008) Teores de proteína e minerais de espécies nativas, potenciais hortaliças e frutas. Ciênc Tecnol Aliment 28:846–857CrossRefGoogle Scholar
  11. 11.
    Fiorini LS (2008) Dossiê: os minerais na alimentação. Food Ingred 4:48–65Google Scholar
  12. 12.
    Cozzolino SMFR (1997) Biodisponibilidade de minerais. Rev Nutr 10(2):87–98CrossRefGoogle Scholar
  13. 13.
    Tokalioglu S (2012) Determination of trace elements in commonly consumed medicinal herbs by ICP – MS and multivariate analysis. Food Chem 134:2504–2508CrossRefPubMedGoogle Scholar
  14. 14.
    Peixoto RRA, Oliveira A, Cadore S (2012) Multielemental determinations in chocolate drink powder using multivariate optimization and ICP OES. J Agric Food Chem 60:8117–8122CrossRefPubMedGoogle Scholar
  15. 15.
    Alzahrani HR, Kumakli H, Ampiah E, Mehari T, Thornton AJ, Babyak CM, Fakayode SO (2016) Determination of macro, essential trace elements, toxic heavy metal concentrations, crude oil extracts and ash composition from Saudi Arabian fruits and vegetables having medicinal values. Arab J of Chem 10(7):906–913CrossRefGoogle Scholar
  16. 16.
    Mingoti SA (2005) Análise de Dados através de Métodos de Estatística Multivariada. UFMG, Minas GeraisGoogle Scholar
  17. 17.
    Beebe KR, Pell RJ (1998) Seasholtz, M.B. Chemometrics: a practical guide. John Wiley & Sons, New YorkGoogle Scholar
  18. 18.
    Neto BB, Scarminio IS, Bruns RE (2006) 25 Anos de quimiometria no Brasil. Quím Nova 29:1401–1406CrossRefGoogle Scholar
  19. 19.
    Hair JF, Tathan RL, Anderson RE (2005) Analise multivariada de dados. Bookman, Porto AlegreGoogle Scholar
  20. 20.
    Ferreira MMC, Antunes AM, Melgo MS, Volpe PLO (1999) Quimiometria I: calibração multivariada, um tutorial. Quím Nova 22:724–731CrossRefGoogle Scholar
  21. 21.
    Berto A, Silva AF, Visentainer JV, Matsushita M, Souza NE (2015) Proximate compositions, mineral contents and fatty acid compositions of native Amazonian fruits. Food Res Int 77:441–449CrossRefGoogle Scholar
  22. 22.
    Sobukola OP, Adeniran OM, Odedairo AA, Kajihausa OE (2010) Heavy metal levels of some fruits and leafy vegetables from selected markets in Lagos, Nigeria. African J Food Sci 4:389–393Google Scholar
  23. 23.
    Shajib MTI, Kawser M, Miah MN, Begum P, Bhattachariee L, Hossain A, Fomsgaard IS, Islam SN (2013) Nutritional composition of minor indigenous fruits: cheapest nutritional source for the rural people of Bangladesh. Food Chem 140:466–470CrossRefGoogle Scholar
  24. 24.
    Shaheen N, Irfan NMD, Khan IN, Islam S, Islan MDS, Ahmed MDK (2016) Presence of heavy metals in fruits and vegetables: health risk implications in Bangladesh. Chemosphere 152:431–438CrossRefPubMedGoogle Scholar
  25. 25.
    Konczak I, Roulle P (2011) Nutritional properties of commercially grown native Australian fruits: lipophilic antioxidants and minerals. Food Res Int 44:2339–2344CrossRefGoogle Scholar
  26. 26.
    Food and Nutrition Board, Institute of Medicine (1997) Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. htpp:// Accessed 14 October 2017
  27. 27.
    Food and Nutrition Board, Institute of Medicine (2001) Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenium, nickel, silicon, vanadium, and zinc. htpp:// Accessed 14 October 2017
  28. 28.
    Food and Nutrition Board, Institute of Medicine (2005) Dietary reference intakes for water, Potassium, Sodium, Chroride, and Sulfate htpp://wwwnapedu Accessed 14 October 2017
  29. 29.
    Parekh PP, Khan AR, Torre MA, Kitto WE (2008) Concentrations of selenium, barium, and radium in Brazil nuts. J Food Compos Anal 21:332–335CrossRefGoogle Scholar
  30. 30.
    Shin E, Craft BD, Pegg RB, Phillips RD, Eitenmiller RR (2010) Chemometric approach to fatty acid profiles in runner-type peanut cultivars by principal component analysis (PCA). Food Chem 119:1262–1270CrossRefGoogle Scholar
  31. 31.
    Tabela Brasileira de Composição de Alimentos (TACO) (2011). NEPA-UNICAMP, Campinas. Accessed 14 October 2017
  32. 32.
    Currie LA (1999) Nomenclature in evaluation of analytical methods including detection and quantification capabilities (IUPAC recommendations 1995). Anal Chim Acta 391:105–126CrossRefGoogle Scholar
  33. 33.
    Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torrresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Inter J Biochem Cell Biol 41:1665–1677CrossRefGoogle Scholar
  34. 34.
    Tormen L, Torres DP, Dittert IM, Araújo RGO, Frescura VLA, Curtius AJ (2011) Rapid assessment of metal contamination in commercial fruit juices by inductively coupled mass spectrometry after a simple dilution. J Food Compos Anal 24:95–102CrossRefGoogle Scholar
  35. 35.
    Lima HN, Melo JWV, Schaeffer CEGR, Ker JC (2005) Dinâmica da mobilização de elementos em solos da Amazônia submetidos à inundação. Acta Amaz 35:317–330CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grupo de Espectrometria Analítica Aplicada, Faculdade de Química, Instituto de Ciências Exatas e NaturaisUniversidade Federal do ParáBelémBrazil
  2. 2.Universidade Federal Rural da AmazôniaParauapebasBrazil

Personalised recommendations