Advertisement

Biological Trace Element Research

, Volume 189, Issue 1, pp 241–250 | Cite as

Iron Deficiency Reduces Synapse Formation in the Drosophila Clock Circuit

  • Samuel S. Rudisill
  • Bradley R. Martin
  • Kevin M. Mankowski
  • Charles R. TessierEmail author
Article

Abstract

Iron serves as a critical cofactor for proteins involved in a host of biological processes. In most animals, dietary iron is absorbed in enterocytes and then disseminated for use in other tissues in the body. The brain is particularly dependent on iron. Altered iron status correlates with disorders ranging from cognitive dysfunction to disruptions in circadian activity. The exact role iron plays in producing these neurological defects, however, remains unclear. Invertebrates provide an attractive model to study the effects of iron on neuronal development since many of the genes involved in iron metabolism are conserved, and the organisms are amenable to genetic and cytological techniques. We have examined synapse growth specifically under conditions of iron deficiency in the Drosophila circadian clock circuit. We show that projections of the small ventrolateral clock neurons to the protocerebrum of the adult Drosophila brain are significantly reduced upon chelation of iron from the diet. This growth defect persists even when iron is restored to the diet. Genetic neuronal knockdown of ferritin 1 or ferritin 2, critical components of iron storage and transport, does not affect synapse growth in these cells. Together, these data indicate that dietary iron is necessary for central brain synapse formation in the fly and further validate the use of this model to study the function of iron homeostasis on brain development.

Keywords

Iron BPS Chelation Drosophila sLNv PDF Clock Ferritin Neurodevelopment Brain Synapse 

Notes

Funding

This work was supported by a Research Enhancement Grant from the Indiana Clinical and Translational Sciences Institute and a National Institute of Mental Health grant R03MH107766, both to C.R.T. This work was also supported by the Indiana University School of Medicine—South Bend Imaging and Flow Cytometry Core Facility.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12011_2018_1442_MOESM1_ESM.pptx (221 kb)
ESM 1 (PPTX 221 kb)

References

  1. 1.
    Manganas P, MacPherson L, Tokatlidis K (2017) Oxidative protein biogenesis and redox regulation in the mitochondrial intermembrane space. Cell Tissue Res 367(1):43–57.  https://doi.org/10.1007/s00441-016-2488-5 CrossRefGoogle Scholar
  2. 2.
    Martins AC, Almeida JI, Lima IS, Kapitao AS, Gozzelino R (2017) Iron metabolism and the inflammatory response. IUBMB Life 69(6):442–450.  https://doi.org/10.1002/iub.1635 CrossRefGoogle Scholar
  3. 3.
    Nairz M, Dichtl S, Schroll A, Haschka D, Tymoszuk P, Theurl I, Weiss G (2018) Iron and innate antimicrobial immunity-depriving the pathogen, defending the host. J Trace Elem Med Biol 48:118–133.  https://doi.org/10.1016/j.jtemb.2018.03.007 CrossRefGoogle Scholar
  4. 4.
    Yu H, Guo P, Xie X, Wang Y, Chen G (2017) Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med 21(4):648–657.  https://doi.org/10.1111/jcmm.13008 CrossRefGoogle Scholar
  5. 5.
    Lui GY, Kovacevic Z, Richardson V, Merlot AM, Kalinowski DS, Richardson DR (2015) Targeting cancer by binding iron: dissecting cellular signaling pathways. Oncotarget 6(22):18748–18779.  https://doi.org/10.18632/oncotarget.4349 CrossRefGoogle Scholar
  6. 6.
    Munoz P, Humeres A (2012) Iron deficiency on neuronal function. Biometals 25(4):825–835.  https://doi.org/10.1007/s10534-012-9550-x CrossRefGoogle Scholar
  7. 7.
    Munoz P, Humeres A, Elgueta C, Kirkwood A, Hidalgo C, Nunez MT (2011) Iron mediates N-methyl-D-aspartate receptor-dependent stimulation of calcium-induced pathways and hippocampal synaptic plasticity. J Biol Chem 286(15):13382–13392.  https://doi.org/10.1074/jbc.M110.213785 CrossRefGoogle Scholar
  8. 8.
    Lu H, Chen J, Huang H, Zhou M, Zhu Q, Yao SQ, Chai Z, Hu Y (2017) Iron modulates the activity of monoamine oxidase B in SH-SY5Y cells. Biometals 30(4):599–607.  https://doi.org/10.1007/s10534-017-0030-1 CrossRefGoogle Scholar
  9. 9.
    Allen RP, Earley CJ (2007) The role of iron in restless legs syndrome. Mov Disord 22(Suppl 18):S440–S448.  https://doi.org/10.1002/mds.21607 CrossRefGoogle Scholar
  10. 10.
    Georgieff MK, Brunette KE, Tran PV (2015) Early life nutrition and neural plasticity. Dev Psychopathol 27(2):411–423.  https://doi.org/10.1017/S0954579415000061 CrossRefGoogle Scholar
  11. 11.
    Freeman A, Pranski E, Miller RD, Radmard S, Bernhard D, Jinnah HA, Betarbet R, Rye DB, Sanyal S (2012) Sleep fragmentation and motor restlessness in a Drosophila model of restless legs syndrome. Curr Biol 22(12):1142–1148.  https://doi.org/10.1016/j.cub.2012.04.027 CrossRefGoogle Scholar
  12. 12.
    Freeman AA, Mandilaras K, Missirlis F, Sanyal S (2013) An emerging role for Cullin-3 mediated ubiquitination in sleep and circadian rhythm: insights from Drosophila. Fly (Austin) 7(1):39–43.  https://doi.org/10.4161/fly.23506 CrossRefGoogle Scholar
  13. 13.
    Unger EL, Hurst AR, Georgieff MK, Schallert T, Rao R, Connor JR, Kaciroti N, Lozoff B, Felt B (2012) Behavior and monoamine deficits in prenatal and perinatal iron deficiency are not corrected by early postnatal moderate-iron or high-iron diets in rats. J Nutr 142(11):2040–2049.  https://doi.org/10.3945/jn.112.162198 CrossRefGoogle Scholar
  14. 14.
    Jorgenson LA, Sun M, O’Connor M, Georgieff MK (2005) Fetal iron deficiency disrupts the maturation of synaptic function and efficacy in area CA1 of the developing rat hippocampus. Hippocampus 15(8):1094–1102.  https://doi.org/10.1002/hipo.20128 CrossRefGoogle Scholar
  15. 15.
    Brunette KE, Tran PV, Wobken JD, Carlson ES, Georgieff MK (2010) Gestational and neonatal iron deficiency alters apical dendrite structure of CA1 pyramidal neurons in adult rat hippocampus. Dev Neurosci 32(3):238–248.  https://doi.org/10.1159/000314341 CrossRefGoogle Scholar
  16. 16.
    Tang X, Zhou B (2013) Iron homeostasis in insects: insights from Drosophila studies. IUBMB Life 65(10):863–872.  https://doi.org/10.1002/iub.1211 CrossRefGoogle Scholar
  17. 17.
    Mandilaras K, Pathmanathan T, Missirlis F (2013) Iron absorption in Drosophila melanogaster. Nutrients 5(5):1622–1647.  https://doi.org/10.3390/nu5051622 CrossRefGoogle Scholar
  18. 18.
    McCarthy RC, Kosman DJ (2015) Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci 72(4):709–727.  https://doi.org/10.1007/s00018-014-1771-4 CrossRefGoogle Scholar
  19. 19.
    Nichol H, Law JH, Winzerling JJ (2002) Iron metabolism in insects. Annu Rev Entomol 47:535–559.  https://doi.org/10.1146/annurev.ento.47.091201.145237 CrossRefGoogle Scholar
  20. 20.
    Gutierrez L, Zubow K, Nield J, Gambis A, Mollereau B, Lazaro FJ, Missirlis F (2013) Biophysical and genetic analysis of iron partitioning and ferritin function in Drosophila melanogaster. Metallomics 5(8):997–1005.  https://doi.org/10.1039/c3mt00118k CrossRefGoogle Scholar
  21. 21.
    Mehta A, Deshpande A, Bettedi L, Missirlis F (2009) Ferritin accumulation under iron scarcity in Drosophila iron cells. Biochimie 91(10):1331–1334.  https://doi.org/10.1016/j.biochi.2009.05.003 CrossRefGoogle Scholar
  22. 22.
    Gonzalez-Morales N, Mendoza-Ortiz MA, Blowes LM, Missirlis F, Riesgo-Escovar JR (2015) Ferritin is required in multiple tissues during Drosophila melanogaster development. PLoS One 10(7):e0133499.  https://doi.org/10.1371/journal.pone.0133499 CrossRefGoogle Scholar
  23. 23.
    Mandilaras K, Missirlis F (2012) Genes for iron metabolism influence circadian rhythms in Drosophila melanogaster. Metallomics 4(9):928–936.  https://doi.org/10.1039/c2mt20065a CrossRefGoogle Scholar
  24. 24.
    Veleri S, Rieger D, Helfrich-Forster C, Stanewsky R (2007) Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. J Biol Rhythm 22(1):29–42.  https://doi.org/10.1177/0748730406295754 CrossRefGoogle Scholar
  25. 25.
    Chang DC (2006) Neural circuits underlying circadian behavior in Drosophila melanogaster. Behav Process 71(2–3):211–225.  https://doi.org/10.1016/j.beproc.2005.12.008 CrossRefGoogle Scholar
  26. 26.
    Gatto CL, Broadie K (2009) Temporal requirements of the fragile x mental retardation protein in modulating circadian clock circuit synaptic architecture. Front Neural Circuits 3:8.  https://doi.org/10.3389/neuro.04.008.2009 CrossRefGoogle Scholar
  27. 27.
    Gorostiza EA, Depetris-Chauvin A, Frenkel L, Pirez N, Ceriani MF (2014) Circadian pacemaker neurons change synaptic contacts across the day. Curr Biol 24(18):2161–2167.  https://doi.org/10.1016/j.cub.2014.07.063 CrossRefGoogle Scholar
  28. 28.
    Tang X, Zhou B (2013) Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster. FASEB J 27(1):288–298.  https://doi.org/10.1096/fj.12-213595 CrossRefGoogle Scholar
  29. 29.
    Yoon S, Cho B, Shin M, Koranteng F, Cha N, Shim J (2017) Iron homeostasis controls myeloid blood cell differentiation in Drosophila. Mol Cell 40(12):976–985.  https://doi.org/10.14348/molcells.2017.0287 Google Scholar
  30. 30.
    Rouault TA (2013) Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14(8):551–564.  https://doi.org/10.1038/nrn3453 CrossRefGoogle Scholar
  31. 31.
    Greminger AR, Lee DL, Shrager P, Mayer-Proschel M (2014) Gestational iron deficiency differentially alters the structure and function of white and gray matter brain regions of developing rats. J Nutr 144(7):1058–1066.  https://doi.org/10.3945/jn.113.187732 CrossRefGoogle Scholar
  32. 32.
    Bastian TW, von Hohenberg WC, Mickelson DJ, Lanier LM, Georgieff MK (2016) Iron deficiency impairs developing hippocampal neuron gene expression, energy metabolism, and dendrite complexity. Dev Neurosci 38(4):264–276.  https://doi.org/10.1159/000448514 CrossRefGoogle Scholar
  33. 33.
    Duck KA, Connor JR (2016) Iron uptake and transport across physiological barriers. Biometals 29(4):573–591.  https://doi.org/10.1007/s10534-016-9952-2 CrossRefGoogle Scholar
  34. 34.
    Stork T, Engelen D, Krudewig A, Silies M, Bainton RJ, Klambt C (2008) Organization and function of the blood-brain barrier in Drosophila. J Neurosci 28(3):587–597.  https://doi.org/10.1523/JNEUROSCI.4367-07.2008 CrossRefGoogle Scholar
  35. 35.
    Kafina MD, Paw BH (2017) Intracellular iron and heme trafficking and metabolism in developing erythroblasts. Metallomics 9(9):1193–1203.  https://doi.org/10.1039/c7mt00103g CrossRefGoogle Scholar
  36. 36.
    Congdon EL, Westerlund A, Algarin CR, Peirano PD, Gregas M, Lozoff B, Nelson CA (2012) Iron deficiency in infancy is associated with altered neural correlates of recognition memory at 10 years. J Pediatr 160(6):1027–1033.  https://doi.org/10.1016/j.jpeds.2011.12.011 CrossRefGoogle Scholar
  37. 37.
    Felt B, Jimenez E, Smith J, Calatroni A, Kaciroti N, Wheatcroft G, Lozoff B (2006) Iron deficiency in infancy predicts altered serum prolactin response 10 years later. Pediatr Res 60(5):513–517.  https://doi.org/10.1203/01.PDR.0000242848.45999.7b CrossRefGoogle Scholar
  38. 38.
    Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T (2006) Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 64(5 Pt 2):S34–S43 discussion S72–91CrossRefGoogle Scholar
  39. 39.
    Carlson ES, Fretham SJ, Unger E, O'Connor M, Petryk A, Schallert T, Rao R, Tkac I, Georgieff MK (2010) Hippocampus specific iron deficiency alters competition and cooperation between developing memory systems. J Neurodev Disord 2(3):133–143.  https://doi.org/10.1007/s11689-010-9049-0 CrossRefGoogle Scholar
  40. 40.
    Carlson ES, Tkac I, Magid R, O’Connor MB, Andrews NC, Schallert T, Gunshin H, Georgieff MK, Petryk A (2009) Iron is essential for neuron development and memory function in mouse hippocampus. J Nutr 139(4):672–679.  https://doi.org/10.3945/jn.108.096354 CrossRefGoogle Scholar
  41. 41.
    Felt BT, Beard JL, Schallert T, Shao J, Aldridge JW, Connor JR, Georgieff MK, Lozoff B (2006) Persistent neurochemical and behavioral abnormalities in adulthood despite early iron supplementation for perinatal iron deficiency anemia in rats. Behav Brain Res 171(2):261–270.  https://doi.org/10.1016/j.bbr.2006.04.001 CrossRefGoogle Scholar
  42. 42.
    Jorgenson LA, Wobken JD, Georgieff MK (2003) Perinatal iron deficiency alters apical dendritic growth in hippocampal CA1 pyramidal neurons. Dev Neurosci 25(6):412–420.  https://doi.org/10.1159/000075667 CrossRefGoogle Scholar
  43. 43.
    Carlson ES, Stead JD, Neal CR, Petryk A, Georgieff MK (2007) Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus. Hippocampus 17(8):679–691.  https://doi.org/10.1002/hipo.20307 CrossRefGoogle Scholar
  44. 44.
    Fernandez MP, Berni J, Ceriani MF (2008) Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biol 6(3):e69.  https://doi.org/10.1371/journal.pbio.0060069 CrossRefGoogle Scholar
  45. 45.
    Jain R, Venkatasubramanian P (2017) Sugarcane molasses—a potential dietary supplement in the management of iron deficiency anemia. J Diet Suppl 14(5):589–598.  https://doi.org/10.1080/19390211.2016.1269145 CrossRefGoogle Scholar
  46. 46.
    Rempoulakis P, Afshar N, Osorio B, Barajas-Aceves M, Szular J, Ahmad S, Dammalage T, Tomas US, Nemny-Lavy E, Salomon M, Vreysen MJ, Nestel D, Missirlis F (2014) Conserved metallomics in two insect families evolving separately for a hundred million years. Biometals 27(6):1323–1335.  https://doi.org/10.1007/s10534-014-9793-9 CrossRefGoogle Scholar
  47. 47.
    D’Ambrosi N, Rossi L (2015) Copper at synapse: release, binding and modulation of neurotransmission. Neurochem Int 90:36–45.  https://doi.org/10.1016/j.neuint.2015.07.006 CrossRefGoogle Scholar
  48. 48.
    Toth K (2011) Zinc in neurotransmission. Annu Rev Nutr 31:139–153.  https://doi.org/10.1146/annurev-nutr-072610-145218 CrossRefGoogle Scholar
  49. 49.
    Lee WC, Micchelli CA (2013) Development and characterization of a chemically defined food for Drosophila. PLoS One 8(7):e67308.  https://doi.org/10.1371/journal.pone.0067308 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Notre DameSouth BendUSA
  2. 2.Department of Medical and Molecular GeneticsIndiana University School of Medicine-South BendSouth BendUSA

Personalised recommendations