Biological Trace Element Research

, Volume 187, Issue 2, pp 579–585 | Cite as

Mineral and Trace Metal Concentrations in Seaweeds by Microwave-Assisted Digestion Method Followed by Quadrupole Inductively Coupled Plasma Mass Spectrometry

  • Suman Thodhal YoganandhamEmail author
  • Vasantharaja Raguraman
  • GobalaKrishnan Muniswamy
  • Gayathri Sathyamoorthy
  • Remya Rajan Renuka
  • Jayaseelan Chidambaram
  • Thirugnanasambandam Rajendran
  • Kumar Chandrasekaran
  • Radhika Rajasree Santha Ravindranath


This study reports the total concentrations of mineral and trace metals sodium, potassium, calcium, magnesium, phosphorus, iron, copper, zinc, and manganese in the seaweeds Padina tetrastromatica, Turbinaria ornate, Sargassum wightii, Sargassum swartzii, Gracilaria edulis, Ulva lactuca, Chaetomorpha antennina, and Halimeda opuntia collected from mandapam coastal regions, Southeast coast of India. Microwave-assisted digestion was used for sample preparation prior to mineral and trace metal analysis. Mineral and trace metal analyses were determined by inductively coupled plasma mass spectrometry. The ranges of concentrations of mineral and trace metals in algae were 27.04 ± 2.54–194.08 ± 2.36 mg/kg for manganese, 1.88 ± 0.10–121.5 ± 0.70 mg/kg for sodium, 6.5 ± 0.56–90.5 ± 2.12 mg/kg for magnesium, 59.07 ± 0.34–672 ± 2.82 mg/kg for potassium, 13.15 ± 2.08–135.13 ± 1.59 for sulfur, 0.003 ± 0.001–3.44 ± 0.13 mg/kg for cobalt, 0.39 ± 0.19–8.95 ± 0.38 mg/kg for copper, 0.72 ± 0.28–25.72 ± 0.39 mg/kg for zinc, and 6.01 ± 0.27–188.47 ± 1.92 mg/kg for iron.The results were evaluated statistically, and the significant difference was observed in the mean concentrations of all mineral and trace elements, except Co, Cu, and Zn, among the type of seaweeds.


Inductively coupled plasma mass spectrometry Microwave-assisted digestion Seaweeds Mineral Trace metals Multielement 



Authors are thankful to Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai for providing necessary facilities.


  1. 1.
    Mateljan G (2006) The world’s healthiest foods. George Mateljan FDN. Seattle, WAGoogle Scholar
  2. 2.
    Collen J, Roeder V, Rousvoal S, Collin O, Kloareg (2001) Summary of worldwide seaweed production, Seventeenth Intl. Seaweed Symp. Proc Pp 456Google Scholar
  3. 3.
    Mishra VK, Temelli F, Ooraikul B, Shacklock PF, Craigie JS (1993) Lipids of the red alga, Palmaria palmata. Bot Mar 36(2):169–174CrossRefGoogle Scholar
  4. 4.
    Urbano MG, Goñi I (2002) Bioavailability of nutrients in rats fed on edible seaweeds, Nori (Porphyra tenera) and Wakame (Undaria pinnatifida), as a source of dietary fibre. Food Chem 76(3):281–286CrossRefGoogle Scholar
  5. 5.
    Nwosu F, Morris J, Lund VA, Stewart D, Ross HA, McDougall GJ (2011) Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine alga. Food Chem 126(3):1006–1012CrossRefGoogle Scholar
  6. 6.
    Kumar M, Kumari P, Trivedi N (2011) Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J Appl Phycol 23(5):797–810CrossRefGoogle Scholar
  7. 7.
    Aslam MN, Kreider JM, Paruchuri T, Bhagavathula N, DaSilva M, Zernicke RF, Goldstein SA, Varani J (2010) A mineral-rich extract from the red marine algae Lithothamnion calcareum preserves bone structure and function in female mice on a western-style diet. Calcif Tissue Int 86(4):313–324PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Arasaki S, Arasaki T (1983) Low calorie, high nutrition vegetables from the sea to help you look and feel better. Japan Publications, Tokyo 196 ppGoogle Scholar
  9. 9.
    Kumar CS, Ganesan P, Suresh PV, Bhaskar N (2008b) Seaweeds as a source of nutritionally beneficial compounds—a review. J Food Sci Technol 45(1):1–13Google Scholar
  10. 10.
    Ensminger AH, Ensminger ME, Konlande JE, Robson JRK (1995) The concise encyclopedia of foods and nutrition. CRC Press, Boca RatonCrossRefGoogle Scholar
  11. 11.
    Dawes CJ (1998) Marine botany. John Wiley & Sons, Inc, New York, p 480Google Scholar
  12. 12.
    Rupérez P (2002) Mineral content of edible marine seaweeds. Food Chem 79(1):23–26CrossRefGoogle Scholar
  13. 13.
    McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15(6):513–524CrossRefGoogle Scholar
  14. 14.
    Marsham S, Scott GW, Tobin ML (2007) Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem 100(4):1331–1336CrossRefGoogle Scholar
  15. 15.
    Chakraborty S, Santra SC (2008) Biochemical composition of eight benthic algae collected fromSunderban. IJMS 37:329–332Google Scholar
  16. 16.
    Matanjun P, Mohamed S, Mustapha NM, Muhammad K (2009) Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J Appl Phycol 21(1):75–80CrossRefGoogle Scholar
  17. 17.
    Matusiewicz H (2003) Wet digestion methods. In: Mester Z, Sturgeon R (eds) Sample preparation for trace element analysis. Elsevier, Amsterdam, p 2003Google Scholar
  18. 18.
    Chan S, Gerson B, Reitz RE, Sadjadi SA (1998) Technical and clinical aspects of spectrometric analysis of trace elements in clinical samples. Clin Lab Med 18(4):615–629PubMedCrossRefGoogle Scholar
  19. 19.
    Sheehan TMT, Halls DJ (1999) Measurement of selenium in clinical specimens. Ann Clin Biochem 36(3):301–315PubMedCrossRefGoogle Scholar
  20. 20.
    Sun S, Li J (2015) Determination of Zr, Nb, Mo, Sn, Hf, Ta, and Win seawater by N-benzoyl-N-phenylhydroxylamine extraction chromatographic resin and inductively coupled plasma-mass spectrometry. Microchem J 119:102–107CrossRefGoogle Scholar
  21. 21.
    Hieftje GM (2007) Introduction—a forward-looking perspective. Inductively coupled plasma spectrometry and its applications. 1–26Google Scholar
  22. 22.
    Taverniers I, De Loose M, Van Bockstaele E (2004) Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. TrAC Trends Anal Chem 23(8):535–552CrossRefGoogle Scholar
  23. 23.
    Andrade LR, Farina M, Filho GMA (2004) Effects of copper on Enteromorpha flexuosa (Chlorophyta) in vitro. Ecotoxicol Environ Saf 58(1):117–125PubMedCrossRefGoogle Scholar
  24. 24.
    Zbikowski R, Szefer P, Latała A (2006) Distribution and relationships between selected chemical elements in green alga Enteromorpha sp. from the southern Baltic. Environ Pollut 143(3):435–448PubMedCrossRefGoogle Scholar
  25. 25.
    Rohani-Ghadikolaei K, Abdulalian E, Ng WK (2012) Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. J Food Sci Technol 49(6):774–780PubMedCrossRefGoogle Scholar
  26. 26.
    Topcuoǧlu S, Güven KC, Balkıs N, Kirbașoǧlu C (2003) Heavy metal monitoring of marine algae from the Turkish Coast of the Black Sea, 1998-2000. Chemosphere 52(10):1683–1688PubMedCrossRefGoogle Scholar
  27. 27.
    Carlson L, Erlandsson B (1991) Effects of salinity on the uptake of radionuclides by Fucus vesiculosus L. J Environ Radioact 13(4):309–322CrossRefGoogle Scholar
  28. 28.
    Manivannan K, Thirumaran G, Devi GK, Hemalatha A, Anantharaman P (2008) Biochemical composition of seaweeds from Mandapam coastal regions along Southeast Coast of India. American-Eurasian Journal of Botany 1(2):32–37Google Scholar
  29. 29.
    Qari R (2015) Heavy metals concentrations in brown seaweed Padina Pavonia (L.) and P. tetrastromatica at different beaches of Karachi Coast. IJMS 44(8):1200–1206Google Scholar
  30. 30.
    Rao IM, Murty MV, Satyanarayana D (1995) Trace metal distribution in marine algae of Visakhapatnam, east coast of India. IJMS 24:142–146Google Scholar
  31. 31.
    Reka P, Thahira Banu A, Seethalakshmi M (2017) Elemental composition of selected edible seaweeds using SEM-energy dispersive spectroscopic analysis. Int Food Res J 24(2):600–606Google Scholar
  32. 32.
    Astorga-España MS, Galdón BR, Rodríguez ER, Romero CD (2015) Mineral and trace element concentrations in seaweeds from the sub-Antarctic ecoregion of Magallanes (Chile). J Food Compos Anal 39:69–76CrossRefGoogle Scholar
  33. 33.
    Cabrita AR, Maia MR, Oliveira HM, Sousa-Pinto I, Almeida AA, Pinto E, Fonseca AJ (2016) Tracing seaweeds as mineral sources for farm-animals. J Appl Phycol 28(5):3135–3150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Suman Thodhal Yoganandham
    • 1
    Email author
  • Vasantharaja Raguraman
    • 1
  • GobalaKrishnan Muniswamy
    • 1
  • Gayathri Sathyamoorthy
    • 1
  • Remya Rajan Renuka
    • 1
  • Jayaseelan Chidambaram
    • 1
  • Thirugnanasambandam Rajendran
    • 1
  • Kumar Chandrasekaran
    • 1
  • Radhika Rajasree Santha Ravindranath
    • 1
  1. 1.Ecotoxicology Division, Centre for Ocean Research, Col. Dr. Jeppiar Research ParkSathyabama Institute of Science and TechnologyChennaiIndia

Personalised recommendations