Advertisement

Biological Trace Element Research

, Volume 187, Issue 2, pp 506–516 | Cite as

Selenium Deficiency Affects Immune Function by Influencing Selenoprotein and Cytokine Expression in Chicken Spleen

  • Pervez Ahmed Khoso
  • Yiming Zhang
  • Hang Yin
  • Xiaohua TengEmail author
  • Shu LiEmail author
Article
  • 77 Downloads

Abstract

Se is an important bioelement essential for a healthy immune system. Dietary Se influences both innate and adaptive immune responses. However, the effects of Se deficiency in chicken spleen are still unknown; thus, we designed an experiment to study the role of Se in chicken spleen. A total of 180 one-day-old sea blue white laying hens were randomly allocated into two groups (a control group and a Se-deficient group). The control group was fed a diet supplemented with sodium selenite with a final Se content of 0.15 mg/kg, and the Se-deficient group was fed a Se-deficient diet with a Se content of 0.033 mg/kg. Twenty selenoproteins and ten cytokines were investigated in detail. The expression levels of selenoproteins in spleen were determined via real-time qPCR at 15, 35, and 55 days, and cytokine levels were determined using ELISA at 15, 35, and 55 days. Protein-protein interaction predictions and principal component analysis were performed. We found that the selenoprotein mRNA levels were significantly lower (P < 0.05) in the Se-deficient group compared with the control group. The expression levels of IL-2, IL-1β, IL-6, IFN-α, and IL-17 were significantly lower (P < 0.05), and the levels of IL-8, IL-10, IFN-γ, IFN-β, and TNF-α were significantly higher (P < 0.05) in the Se-deficient group. These selenoproteins were positively correlated with component 1 and component 2 of the PCA, but the relationship between cytokines and principal components in spleens was very complex. The investigation showed that Se deficiency caused a reduction in selenoprotein gene expression and further affected certain cytokines levels. Our results provide some compensatory data about selenoproteins and cytokines in spleens of Se-deficient chickens and provide clues for further research on the relationship between selenoproteins and cytokines.

Keywords

Selenoprotein Cytokine Chicken Spleen Selenium 

Notes

Acknowledgments

The authors thank the members of the veterinary internal medicine laboratory at the College of Veterinary Medicine and Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine.

Funding

This study was supported by the International (Regional) Cooperation and Exchange Projects of the National Natural Science Foundation of China (31320103920) and the National Natural Science Foundation of China (Grant No.31472161).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Hoffmann PR (2007) Mechanisms by which selenium influences immune responses. Arch Immunol Ther Exp 55(5):289–297CrossRefGoogle Scholar
  2. 2.
    Thompson JN, Scott ML (1970) Impaired lipid and vitamin E absorption related to atrophy of the pancreas in selenium-deficient chicks. J Nutr 100(7):797–809CrossRefGoogle Scholar
  3. 3.
    You L, Liu C, Yang ZJ, Li M, Li S (2014) Prediction of selenoprotein T structure and its response to selenium deficiency in chicken immune organs. Biol Trace Elem Res 160(2):222–231.  https://doi.org/10.1007/s12011-014-0049-x CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang ZW, Wang QH, Zhang JL, Li S, Wang XL, Xu SW (2012) Effects of oxidative stress on immunosuppression induced by selenium deficiency in chickens. Biol Trace Elem Res 149(3):352–361.  https://doi.org/10.1007/s12011-012-9439-0 CrossRefPubMedGoogle Scholar
  5. 5.
    Marsh JA, Combs GF Jr, Whitacre ME, Dietert RR (1986) Effect of selenium and vitamin E dietary deficiencies on chick lymphoid organ development. Proc Soc Exp Biol Med 182(4):425–436CrossRefGoogle Scholar
  6. 6.
    MJ Todorovic´, V Davidovic´, L Sretenovic´(2012) The effect of diet selenium supplement on meat quality. Biotechnol Anim Husb 28(3):553–561CrossRefGoogle Scholar
  7. 7.
    Li X, Xing M, Chen M, Zhao J, Fan R, Xia Z, Cao C, Jie Y, Zhang Z, Xu S (2017) Effects of selenium-lead interaction on the gene expression of inflammatory factors and selenoproteins in chicken neutrophils. Ecotoxicol Environ Saf 139:447–453CrossRefGoogle Scholar
  8. 8.
    Chen M, Li X, Fan R, Yang J, Jin X, Hamid S, Xu S (2017) Cadmium induces BNIP3-dependent autophagy in chicken spleen by modulating miR-33-AMPK axis. Chemosphere 194:396–402CrossRefGoogle Scholar
  9. 9.
    Stadtman TC (2000) Selenium biochemistry. Mammalian selenoenzymes. Ann N Y Acad Sci 899:399–402CrossRefGoogle Scholar
  10. 10.
    Mariotti M, Ridge PG, Zhang Y, Lobanov AV, Pringle TH, Guigo R, Hatfield DL, Gladyshev VN (2012) Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS One 7(3):e33066.  https://doi.org/10.1371/journal.pone.0033066 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yao H, Liu W, Zhao W, Fan R, Zhao X, Khoso PA, Zhang Z, Xu S (2014) Different responses of selenoproteins to the altered expression of selenoprotein W in chicken myoblasts. RSC Adv 4(109):64032–64042CrossRefGoogle Scholar
  12. 12.
    Pappas AC, Zoidis E, Surai PF, Zervas G (2008) Selenoproteins and maternal nutrition. Comp Biochem Physiol B Biochem Mol Biol 151(4):361–372.  https://doi.org/10.1016/j.cbpb.2008.08.009 CrossRefPubMedGoogle Scholar
  13. 13.
    Z Yang, C Liu, Li Shu (2015) Selenium deficiency mainly influences the gene expressions of antioxidative selenoproteins in broiler chicken immune organs. Anim Husb Feed Sci 36(z1):59–70Google Scholar
  14. 14.
    Carlson BA, Novoselov SV, Kumaraswamy E, Lee BJ, Anver MR, Gladyshev VN, Hatfield DL (2004) Specific excision of the selenocysteine tRNA[Ser]Sec (Trsp) gene in mouse liver demonstrates an essential role of selenoproteins in liver function. J Biol Chem 279(9):8011–8017CrossRefGoogle Scholar
  15. 15.
    Hill KE, Zhou J, Mcmahan WJ, Motley AK, Atkins JF, Gesteland RF, Burk RF (2003) Deletion of selenoprotein P alters distribution of selenium in the mouse. J Biol Chem 278(16):13640–13646CrossRefGoogle Scholar
  16. 16.
    Yao H, Zhao W, Zhao X, Fan R, Khoso PA, Zhang Z, Liu W, Xu S (2014) Selenium deficiency mainly influences the gene expressions of antioxidative selenoproteins in chicken muscles. Biol Trace Elem Res 161(3):318–327.  https://doi.org/10.1007/s12011-014-0125-2 CrossRefPubMedGoogle Scholar
  17. 17.
    Liu CP, Fu J, Lin SL, Wang XS, Li S (2014) Effects of dietary selenium deficiency on mRNA levels of twenty-one selenoprotein genes in the liver of layer chicken. Biol Trace Elem Res 159(1–3):192–198.  https://doi.org/10.1007/s12011-014-0005-9 CrossRefPubMedGoogle Scholar
  18. 18.
    Yao HD, Wu Q, Zhang ZW, Zhang JL, Li S, Huang JQ, Ren FZ, Xu SW, Wang XL, Lei XG (2013) Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of se-deficient chicks. J Nutr 143(5):613–619.  https://doi.org/10.3945/jn.112.172395 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Falk M, Bernhoft A, Framstad T, Salbu B, Wisløff H, Kortner TM, Kristoffersen AB, Oropeza-Moe M (2018) Effects of dietary sodium selenite and organic selenium sources on immune and inflammatory responses and selenium deposition in growing pigs. J Trace Elem Med BiolGoogle Scholar
  20. 20.
    Brigelius-Flohe R, Banning A, Kny M, Bol GF (2004) Redox events in interleukin-1 signaling. Arch Biochem Biophys 423(1):66–73CrossRefGoogle Scholar
  21. 21.
    Peng X, Cui H, Yuan J, Cui W, Fang J, Zuo Z, Deng J, Pan K, Zhou Y, Lai W (2011) Low-selenium diet induces cell cycle arrest of thymocytes and alters serum IL-2 content in chickens. Biol Trace Elem Res 144(1–3):688–694.  https://doi.org/10.1007/s12011-011-9077-y CrossRefPubMedGoogle Scholar
  22. 22.
    Sheng PF, Jiang Y, Zhang ZW, Zhang JL, Li S, Zhang ZQ, Xu SW (2014) The effect of Se-deficient diet on gene expression of inflammatory cytokines in chicken brain. Biometals 27(1):33–43.  https://doi.org/10.1007/s10534-013-9682-7 CrossRefPubMedGoogle Scholar
  23. 23.
    Peirson SN, Butler JN, Foster RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31(14):e73CrossRefGoogle Scholar
  24. 24.
    Zhang L, Wang YX, Zhou Y, Zheng L, Zhan XA, Pu QH (2014) Different sources of maternal selenium affect selenium retention, antioxidant status, and meat quality of 56-day-old offspring of broiler breeders. Poult Sci 93(9):2210–2219.  https://doi.org/10.3382/ps.2013-03605 CrossRefPubMedGoogle Scholar
  25. 25.
    Gao X, Xing H, Li S, Li J, Ying T, Xu S (2012) Selenium regulates gene expression of selenoprotein W in chicken gastrointestinal tract. Biol Trace Elem Res 145(2):181–188.  https://doi.org/10.1007/s12011-011-9175-x CrossRefPubMedGoogle Scholar
  26. 26.
    Ruan H, Zhang Z, Wu Q, Yao H, Li J, Li S, Xu S (2012) Selenium regulates gene expression of selenoprotein W in chicken skeletal muscle system. Biol Trace Elem Res 145(1):59–65.  https://doi.org/10.1007/s12011-011-9166-y CrossRefPubMedGoogle Scholar
  27. 27.
    Sunde RA, Raines AM, Barnes KM, Evenson JK (2009) Selenium status highly regulates selenoprotein mRNA levels for only a subset of the selenoproteins in the selenoproteome. Biosci Rep 29(5):329–338.  https://doi.org/10.1042/BSR20080146 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lin SL, Wang CW, Tan SR, Liang Y, Yao HD, Zhang ZW, Xu SW (2014) Selenium deficiency inhibits the conversion of thyroidal thyroxine (T4) to triiodothyronine (T3) in chicken thyroids. Biol Trace Elem Res 161(3):263–271.  https://doi.org/10.1007/s12011-014-0083-8 CrossRefPubMedGoogle Scholar
  29. 29.
    Bellinger FP, Raman AV, Reeves MA, Berry MJ (2009) Regulation and function of selenoproteins in human disease. The Biochemical journal 422(1):11–22.  https://doi.org/10.1042/BJ20090219 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Petit N, Lescure A, Rederstorff M, Krol A, Moghadaszadeh B, Wewer UM, Guicheney P (2003) Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum Mol Genet 12(9):1045–1053CrossRefGoogle Scholar
  31. 31.
    Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300(5624):1439–1443.  https://doi.org/10.1126/science.1083516 CrossRefPubMedGoogle Scholar
  32. 32.
    Reeves MA, Hoffmann PR (2009) The human selenoproteome: recent insights into functions and regulation. Cell Mol Life Sci 66(15):2457–2478.  https://doi.org/10.1007/s00018-009-0032-4 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Jin X, Xu Z, Zhao X, Chen M, Xu S (2017) The antagonistic effect of selenium on lead-induced apoptosis via mitochondrial dynamics pathway in the chicken kidney. Chemosphere 180:259–266CrossRefGoogle Scholar
  34. 34.
    Panee J, Stoytcheva ZR, Liu W, Berry MJ (2007) Selenoprotein H is a redox-sensing high mobility group family DNA-binding protein that up-regulates genes involved in glutathione synthesis and phase II detoxification. J Biol Chem 282(33):23759–23765.  https://doi.org/10.1074/jbc.M702267200 CrossRefPubMedGoogle Scholar
  35. 35.
    Kipp AP, Banning A, van Schothorst EM, Meplan C, Coort SL, Evelo CT, Keijer J, Hesketh J, Brigelius-Flohe R (2012) Marginal selenium deficiency down-regulates inflammation-related genes in splenic leukocytes of the mouse. J Nutr Biochem 23(9):1170–1177.  https://doi.org/10.1016/j.jnutbio.2011.06.011 CrossRefPubMedGoogle Scholar
  36. 36.
    Zhao X, Yao H, Fan R, Zhang Z, Xu S (2014) Selenium deficiency influences nitric oxide and selenoproteins in pancreas of chickens. Biol Trace Elem Res 161(3):341–349.  https://doi.org/10.1007/s12011-014-0139-9 CrossRefPubMedGoogle Scholar
  37. 37.
    Chu BX, Fan RF, Lin SQ, Yang DB, Wang ZY, Wang L (2018) Interplay between autophagy and apoptosis in lead(II)-induced cytotoxicity of primary rat proximal tubular cells. J Inorg Biochem 182:184–193CrossRefGoogle Scholar
  38. 38.
    Pagnini C, Saeed R, Bamias G, Arseneau KO, Pizarro TT, Cominelli F (2010) Probiotics promote gut health through stimulation of epithelial innate immunity. Proc Natl Acad Sci U S A 107(1):454–459.  https://doi.org/10.1073/pnas.0910307107 CrossRefPubMedGoogle Scholar
  39. 39.
    Olson TS, Reuter BK, Scott KG, Morris MA, Wang XM, Hancock LN, Burcin TL, Cohn SM, Ernst PB, Cominelli F, Meddings JB, Ley K, Pizarro TT (2006) The primary defect in experimental ileitis originates from a nonhematopoietic source. J Exp Med 203(3):541–552.  https://doi.org/10.1084/jem.20050407 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yang T, Cao C, Yang J, Liu T, Lei XG, Zhang Z, Xu S (2018) miR-200a-5p regulates myocardial necroptosis induced by Se deficiency via targeting RNF11. Redox Biol 15:159–169CrossRefGoogle Scholar
  41. 41.
    Dann SM, Spehlmann ME, Hammond DC, Iimura M, Hase K, Choi LJ, Hanson E, Eckmann L (2008) IL-6-dependent mucosal protection prevents establishment of a microbial niche for attaching/effacing lesion-forming enteric bacterial pathogens. J Immunol 180(10):6816–6826CrossRefGoogle Scholar
  42. 42.
    Abdelsalam M, Isobe N, Yoshimura Y (2011) Effects of lipopolysaccharide on the expression of proinflammatory cytokines and chemokines and influx of leukocytes in the hen ovary. Poult Sci 90(9):2054–2062.  https://doi.org/10.3382/ps.2011-01394 CrossRefPubMedGoogle Scholar
  43. 43.
    Nii T, Sonoda Y, Isobe N, Yoshimura Y (2011) Effects of lipopolysaccharide on the expression of proinflammatory cytokines and chemokines and the subsequent recruitment of immunocompetent cells in the oviduct of laying and molting hens. Poult Sci 90(10):2332–2341.  https://doi.org/10.3382/ps.2011-01596 CrossRefPubMedGoogle Scholar
  44. 44.
    Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10(2):89–102.  https://doi.org/10.1038/nri2691 CrossRefPubMedGoogle Scholar
  45. 45.
    Sivick KE, Schaller MA, Smith SN, Mobley HL (2010) The innate immune response to uropathogenic Escherichia coli involves IL-17A in a murine model of urinary tract infection. J Immunol 184(4):2065–2075.  https://doi.org/10.4049/jimmunol.0902386 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Khoso PA, Yang Z, Liu C, Li S (2015) Selenium deficiency downregulates Selenoproteins and suppresses immune function in chicken thymus. Biol Trace Elem Res.  https://doi.org/10.1007/s12011-015-0282-y
  47. 47.
    Zhao FQ, Zhang ZW, Yao HD, Wang LL, Liu T, Yu XY, Li S, Xu SW (2013) Effects of cold stress on mRNA expression of immunoglobulin and cytokine in the small intestine of broilers. Res Vet Sci 95(1):146–155.  https://doi.org/10.1016/j.rvsc.2013.01.021 CrossRefPubMedGoogle Scholar
  48. 48.
    Ramgolam VS, Markovic-Plese S (2010) Interferon-beta inhibits Th17 cell differentiation in patients with multiple sclerosis. Endocr Metab Immune Disord Drug Targets 10(2):161–167CrossRefGoogle Scholar
  49. 49.
    Sheridan PA, Zhong N, Carlson BA, Perella CM, Hatfield DL, Beck MA (2007) Decreased selenoprotein expression alters the immune response during influenza virus infection in mice. J Nutr 137(6):1466–1471CrossRefGoogle Scholar
  50. 50.
    de Andres C, Aristimuno C, de Las Heras V, Martinez-Gines ML, Bartolome M, Arroyo R, Navarro J, Gimenez-Roldan S, Fernandez-Cruz E, Sanchez-Ramon S (2007) Interferon beta-1a therapy enhances CD4+ regulatory T-cell function: an ex vivo and in vitro longitudinal study in relapsing-remitting multiple sclerosis. J Neuroimmunol 182(1–2):204–211.  https://doi.org/10.1016/j.jneuroim.2006.09.012 CrossRefPubMedGoogle Scholar
  51. 51.
    Lee CC, Kim BS, Wu CC, Lin TL (2015) Bursal transcriptome of chickens protected by DNA vaccination versus those challenged with infectious bursal disease virus. Arch Virol 160(1):69–80.  https://doi.org/10.1007/s00705-014-2232-y CrossRefPubMedGoogle Scholar
  52. 52.
    Cheeseman JH, Levy NA, Kaiser P, Lillehoj HS, Lamont SJ (2008) Salmonella Enteritidis-induced alteration of inflammatory CXCL chemokine messenger-RNA expression and histologic changes in the ceca of infected chicks. Avian Dis 52(2):229–234CrossRefGoogle Scholar
  53. 53.
    Sesti-Costa R, Ignacchiti MD, Chedraoui-Silva S, Marchi LF, Mantovani B (2012) Chronic cold stress in mice induces a regulatory phenotype in macrophages: correlation with increased 11beta-hydroxysteroid dehydrogenase expression. Brain Behav Immun 26(1):50–60.  https://doi.org/10.1016/j.bbi.2011.07.234 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Veterinary Medicine*Northeast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.Shaheed Benazir BhuttoUniversity of Veterinary and Animal SciencesSakrandPakistan
  3. 3.College of Animal Science and TechnologyNortheast Agricultural UniversityHarbinPeople’s Republic of China

Personalised recommendations