Advertisement

Biological Trace Element Research

, Volume 187, Issue 2, pp 526–535 | Cite as

Gill Morphology and Na+/K+-ATPase Activity of Gobionellus oceanicus (Teleostei: Gobiidae) in an Estuarine System

  • Helena Rachel da Mota Araujo
  • Marisa Narciso Fernandes
  • André Luis da Cruz
Article
  • 48 Downloads

Abstract

Gobionellus oceanicus is a species widely distributed on the Atlantic coast and may be susceptible to anthropic effects. This study evaluated the morphology and the Na+/K+-ATPase activity of G. oceanicus gills considering the concentration of metals in the fish and Subaé River estuary. Although the metal concentrations detected in the water and sediment did not exceed certain limits, CONAMA (Brazilian Environment Council), TEL (Threshold Effect Level), and PEL (Probable Effect Level), the metals levels in gills plus muscle and skin of G. oceanicus were above the permitted setting of the Ministry of Health, Brazil. The pavement epithelial cells (PVC) of the gill filament was observed that there were long microridges either in the apical surface or in the lamella; especially, microridges degeneration was shown in some PVC from filament epithelium. The number of ionocyte and the volume density were (0.02 ± 0.001)/μm and (0.38 ± 0.27) %, respectively. The activity of Na+/K+-ATPase was 1.13 ± 0.76 μM Pi mg protein−1 h−1. We describe the volume density and number of ionocytes and Na+/K+-ATPase enzymatic activity in G. oceanicus for the first time, which is useful for basic and comparative future studies to support aquatic biomonitoring.

Keywords

ATPase Gills Ionocytes Metals Estuary Todos os Santos Bay 

Notes

Acknowledgements

The authors acknowledge the Laboratório de Microscopia Eletrônica, FIOCRUZ, Salvador, Bahia, for the facilities in processing biological material and obtained images in the scanning electron microscope, and Thiago de Sá for the language review in the previous version of the manuscript.

Funding

This work received financial support from the National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq, Brazil) and National Council for Scientific and Technological Development (CNPq).

References

  1. 1.
    Andrade-Tubino MF, Ribeiro ALR, Vianna M (2008) Organização espaço-temporal das ictiocenoses demersais nos ecossistemas estuarinos brasileiros: uma síntese. Oecol Bras 12(4):640–661Google Scholar
  2. 2.
    Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  3. 3.
    Brazil. SVS/MS - Ministério da Saúde. Secretaria de Vigilância Sanitária (1998) “Princípios Gerais para o Estabelecimento de Níveis Máximos de Contaminantes Químicos em Alimentos”. Portaria no. 685, de 27 de agosto de 1998. D.O.U. – Diário Oficial da União; Poder Executivo, de 28 de agosto de 1998Google Scholar
  4. 4.
    Brunelli E, Talarico E, Corapi B, Perrotta I, Tripepi S (2008) Effects of a sublethal concentration of sodium lauryl sulphate on the morphology and Na+/K+ ATPase activity in the gill of the ornate wrasse (Thalassoma pavo). Ecotoxicol Environ Saf 71:436–445.  https://doi.org/10.1016/j.ecoenv.2007.09.010 CrossRefPubMedGoogle Scholar
  5. 5.
    Burton TD, Jones AH, Cairns Jr J (1972) Acute zinc toxicity to rainbow trout (Salmo gairdneri): confirmation of the hypothesis that death is related to tissue hipoxia. J Fish Res Board Can 29:1463–1466CrossRefGoogle Scholar
  6. 6.
    Bury NR, Boyle D, Cooper CA (2001) Iron. In: Wood CM, Farrell AP, Brauner CJ (eds) Homeostase and toxicology of essential metals. 1st edn. Academic Press, New Cambridge, pp 201–251Google Scholar
  7. 7.
    Camargo MMP, Fernandes MN, Martinez CBR (2009) How aluminium exposure promotes osmoregulatory disturbances in the neotropical freshwater fish Prochilus lineatus. Aquat Toxicol 94:40–46.  https://doi.org/10.1016/j.aquatox.2009.05.017 CrossRefPubMedGoogle Scholar
  8. 8.
    Canadian Council of Ministers of the Environment (2002) Canadian sediment quality guidelines for the protection of aquatic life: Summary tables. Canadian environmental quality guidelines, WinnipegGoogle Scholar
  9. 9.
    Conama. Conselho Nacional do Meio Ambiente/Ministério do Meio Ambiente (2005) Resolução No. 357 de 17 de março de 2005 http://www.mma.gov.br/port/conama/legiano1.cfm?codlegitipo=3&ano=2005. Accessed 13 Aug 2005
  10. 10.
    Costa OTF, Pedretti AC, Schmitz A, Perry SF, Fernandes MN (2007) Stereological estimation of surface area and barrier thickness of fish gills in vertical sections. J Microsc 225(1):1–9.  https://doi.org/10.1111/j.1365-2818.2007.01710.x CrossRefPubMedGoogle Scholar
  11. 11.
    Dang Z, Lock RAC, Flick G, Wendelaar Bonga SE (2000) Na+/K+-ATPase immunoreactivity in branchial chloride cells of Oreochromis mossambicus exposed to cooper. J Exp Biol 151:517–428Google Scholar
  12. 12.
    Dirilgen N (2001) Accumulation of heavy metals in freshwater organisms: assessment of toxic interactions. Turk J Chem 25:173–179Google Scholar
  13. 13.
    Eisler R, Gardner GR (1973) Acute toxicology to an estuarine teleost of mixture of cadmium, copper and zinc salts. J Fish Biol 5:131–142CrossRefGoogle Scholar
  14. 14.
    Eschmeyer, WN, Fricke R, van der Laan R (eds) (2017) Catalog of fishes: genera, species, references. [This version was edited by Bill Eschmeyer.] [Electronic version]. [cited 2017 Jun 23]. Available from: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
  15. 15.
    Evans DH (1987) The fish gill: site of action and model for toxic effects of environmental pollutants. Environ Health Persp 71:47–58CrossRefGoogle Scholar
  16. 16.
    Evans DH, Piermarini PM, Potts WTW (1999) Ionic transport in the fish gill epithelium. J Exp Zool 283:641–652CrossRefGoogle Scholar
  17. 17.
    Evans DH, Piermarini PM, Keith PC (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177.  https://doi.org/10.1152/physrev.00050.2003 CrossRefPubMedGoogle Scholar
  18. 18.
    Fernandes MN, Paulino MG, Sakuragui MM, Ramos CA, Pereira CDS, Sadauskas-Henrique H (2013) Organochlorines and metals induce changes in the mitochondris-rich cells of fish gills: an integrative field study involving chemical, biochemical and morphological analyses. Aquat Toxicol 126:180–190.  https://doi.org/10.1016/j.aquatox.2012.11.008 CrossRefPubMedGoogle Scholar
  19. 19.
    Guite LL, Paul R, Ramanujam SNI (2015) Scanning electron microscopic studies on the gills of the catfish Heteropneustes fossilis (Bloch) exposed to copper at varying pH. Bull Environ Contam Toxicol 94:709–714.  https://doi.org/10.1007/s00128-014-1455-7 CrossRefPubMedGoogle Scholar
  20. 20.
    Geffard O, Geffard A, His E, Budzinski H (2003) Assessment of the bioavailability and toxicity of sediment-associated polycyclic aromatic hydrocarbons and heavy metals applied to Crassostrea gigas embryos and larvae. Mar Pollut Bull 46:481–490.  https://doi.org/10.1016/S0025-326X(02)00451-4 CrossRefPubMedGoogle Scholar
  21. 21.
    Hatje V, Barros FCR, Figueiredo DG, Santos VLCS (2006) Trace metal contamination and benthic assemblages in Subaé estuarine system, Brazil. Mar Pollut Bull 52:969–977.  https://doi.org/10.1016/j.marpolbul.2006.04.016 CrossRefGoogle Scholar
  22. 22.
    Hatje V, Bícego MC, Carvalho GC, Andrade JB (2009) Contaminação química. In: Hatje V, Andrade JB (eds) Baía de Todos os Santos: aspectos oceanográficos. Edufba, Salvador, pp 243–299Google Scholar
  23. 23.
    Hatje V, Macedo SM, Jesus RM, Garcia K, Queiroz AF (2010) Inorganic as speciation and bioavailability in estuarine sediments of Todos os Santos Bay, BA, Brazil. Mar Pollut Bull 60:2225–2232.  https://doi.org/10.1016/j.marpolbul.2010.08.014 CrossRefPubMedGoogle Scholar
  24. 24.
    Hatje V, Barros F (2012) Overview of the 20th century impact of trace metal contamination in the estuaries of Todos os Santos Bay: past, present and future scenarios. Mar Pollut Bull 64:2603–2614.  https://doi.org/10.1016/j.marpolbul.2012.07.009 CrossRefPubMedGoogle Scholar
  25. 25.
    Hernández RB, Farina M, Esposito BP, Souza-Pinto NC, Barbosa F, Sunol C (2011) Mechanisms of manganese-induced neurotoxicity in primary neuronal cultures: the role of manganese speciation and cell type. Toxicol Sci 124:414–423.  https://doi.org/10.1093/toxsci/kfr234 CrossRefPubMedGoogle Scholar
  26. 26.
    Hiroi J, McCormick SD (2012) New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respir Physiol Neurobiol 184(3):257–268.  https://doi.org/10.1016/j.resp.2012.07.019 CrossRefPubMedGoogle Scholar
  27. 27.
    Hogstrand C (2012) Zync. In: Wood CM, Farrell AP, Brauner CJ (eds) Homeostase and toxicology of essential metals. Academic Press, Massachusetts, pp 135–200Google Scholar
  28. 28.
    Howard CV, Reed MG (2005) Unbiased stereology: three-dimensional measurement in microscopy. BIOS, OxfordGoogle Scholar
  29. 29.
    Hwang PP, Lee TH (2007) New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A 148:479–497.  https://doi.org/10.1016/j.cbpa.2007.06.416 CrossRefGoogle Scholar
  30. 30.
    Lessa GC, Dominguez JML, Bittencourt ACSP, Brichta A (2001) The tides and tidal circulation of Todos os Santos Bay, northeast Brazil: a general characterization. An Acad Bras Cienc 73(2):245–261CrossRefGoogle Scholar
  31. 31.
    Kaoud HA, El-Dahshan AR (2010) Bioaccumulation and histopathological alterations of the heavy metals in Oreochromis niloticus fish. Nat Sci 4(8):147–156Google Scholar
  32. 32.
    Kaur M, Jindal R (2016) SEM study of ultrastructural changes in branchial architecture of Ctenopharyngodon idella (Cuvier & Valenciennes) exposed to chlorpyrifos. Arch Biol Sci 68(2):393–398.  https://doi.org/10.2298/abs150701034k CrossRefGoogle Scholar
  33. 33.
    Kaya G, Turgkoglu S (2017) Bioaccumulation of heavy metals in various tissues of some fish species and green tiger shrimp (Penaeus semisulcatus) from İskenderun Bay, Turkey, and risk assessment for human health. Biol Trace Elem Res 180:314–326.  https://doi.org/10.1007/s12011-017-0996-0 CrossRefPubMedGoogle Scholar
  34. 34.
    Klotz K, Weistenhöfer W, Neff F, Hartwig A, van Thriel C, Drexler H (2017) The health effects of aluminum exposure. Dtsch Arztebl Int 114:653–659.  https://doi.org/10.1080/10937400701597766 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Maina JN (1991) A morphometric analysis of chloride cells in the gills of the teleosts Oreochromis alcalicus and Oreochromis niloticus and a description of presumptive urea-excreting cells in O. alcalicus. J Anat 175:131–145PubMedPubMedCentralGoogle Scholar
  36. 36.
    Mayer-Pinto M, Underwood AJ, Tolhurst T, Coleman RA (2010) Effects of metals on aquatic assemblages: what do we really know? J Exp Mari Biol Ecol 391:1–9.  https://doi.org/10.1016/j.jembe.201006.013 CrossRefGoogle Scholar
  37. 37.
    Mazon AF, Cerqueira CCC, Fernandes MN (2002) Gill cellular changes induced by cooper exposure in the South American tropical freshwater fish Prochilodus scrofa. Environ Res 88:52–63.  https://doi.org/10.1006/enrs.2001.4315 CrossRefPubMedGoogle Scholar
  38. 38.
    Meek SE, Hildebrand SF (1928) The marine fishes of Panama. Field Museum of Natural History, ChicagoGoogle Scholar
  39. 39.
    Menezes NA, Figueiredo JL (1985) Manual de peixes marinhos do sudeste do Brasil: V. Teleostei. Museu de Zoologia da Universidade de São Paulo, São PauloGoogle Scholar
  40. 40.
    Monteiro SM, Rocha E, Fontaínhas-Fernandes A, Sousa M (2008) Quantitative histopathology of Oreochromis niloticus gills after copper exposure. J Fish Biol 73:1376–1392.  https://doi.org/10.1111/j.1095-8649.2008.02009.x CrossRefGoogle Scholar
  41. 41.
    Monteiro SM, Rocha E, Mancera JM, Fontaínhas-Fernandes A, Sousa M (2009) A stereological study of copper toxicyty in gills of Oreochromis niloticus. Ecotoxicol Environ Saf 72:213–223.  https://doi.org/10.1016/j.ecoenv.2008.02.008 CrossRefPubMedGoogle Scholar
  42. 42.
    Moraes MFPG, Holler S, Costa OT, Glass ML, Fernandes MN, Perry SF (2005) Morphometric comparison of the respiratory organs in the south american lungfish Lepidosiren paradoxa (Dipnoi). Physiol Biochem Zool 78:546–559.  https://doi.org/10.1086/430686 CrossRefPubMedGoogle Scholar
  43. 43.
    Nolan DT (2000) Skin response of fish stressors. Thesis, Catolic University of NijmegenGoogle Scholar
  44. 44.
    Oliveira CPF (2002) Efeito de cobre e chumbo, metais pesados presentes na água de formação derivada da extração do petróleo da província petroleira do Urucu – AM, sobre o tambaqui, Colossoma macropomum (Curvier, 1818). Thesis, Instituto Nacional de Pesquisas da Amazônia e Universidade Federal do Amazonas, ManausGoogle Scholar
  45. 45.
    Pauw N, Vanhooren G (1983) Method for biological quality assessment of watercourses in Belgium. Hydrobiologia 100:153–168CrossRefGoogle Scholar
  46. 46.
    Pezold F (2004) Phylogenetic analysis of the genus Gobionellus (Teleostei: Gobiidae). Copeia 2004(2):260–280.  https://doi.org/10.1643/ci-02-218r3 CrossRefGoogle Scholar
  47. 47.
    Quabius ES, Balm PHM, Wendelaar Bonga SE (1997) Interrenal stress responsiveness of tilapia (Oreochromis mossambicus) is impaired by dietary exposure to PCB 126. Gen Comp Endocrinol 108:472–482CrossRefGoogle Scholar
  48. 48.
    Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy-metal pollution. Biol Rev Camb Philos Soc 56:99–151CrossRefGoogle Scholar
  49. 49.
    Samanta P, Bandyopadhyay N, Pal S, Mukherjee AK, Ghosh AR (2015) Histopathological and ultramicroscopical changes in gill, liver and kidney of Anabas testudineus (Bloch) after chronic intoxication of almix (metsulfuron methyl 10.1% + chlorimuronethyl 10.1%) herbicide. Ecotoxicol Environ Saf 122:360–367.  https://doi.org/10.1016/j.ecoenv.2015.08.022 CrossRefPubMedGoogle Scholar
  50. 50.
    Souza MM, Windmoller CC, Hatje V (2011) Shellfish from Todos os Santos Bay, Bahia, Brazil: treat or threat? Mar Pollut Bull 62:2254–2263.  https://doi.org/10.1016/j.marpolbul.2011.07.010 CrossRefPubMedGoogle Scholar
  51. 51.
    Souza IC, Duarte ID, Pimentel NQ, Rocha LD, Morozesck M, Bonomo MM, Azevedo VC, Pereira CDS, Monferran MV, Milanez CRD, Matsumoto ST, Wunderlin DA, Fernandes MN (2013) Matching metal pollution with bioavailability, bioaccumulation and biomarkers response in fish (Centropomus parallelus) resident in neotropical estuaries. Environ Pollut 180:136–144.  https://doi.org/10.1016/j.envpol.2013.05.017 CrossRefPubMedGoogle Scholar
  52. 52.
    Standard Methods for the Examination of Water and Wastewater (2005) 21st ed. http://www.standardmethods.org. Accessed 29 Jun 2013
  53. 53.
    Thacker CE, Roje DM (2011) Phylogeny of Gobiidae and identification of gobiid lineages. Syst Biodivers 9:329–347.  https://doi.org/10.1080/14772000.2011629011 CrossRefGoogle Scholar
  54. 54.
    Stankevičiūtė M, Sauliutė G, Svecevičius G, Kazlauskienė N, Baršienė J (2017) Genotoxicity and cytotoxicity response to environmentally relevant complex metal mixture (Zn, Cu, Ni, Cr, Pb, Cd) accumulated in Atlantic salmon (Salmo salar). Part I: importance of exposure time and tissue dependence. Ecotoxicology 26:1051–1064.  https://doi.org/10.1007/s10646-017-1833-0 CrossRefPubMedGoogle Scholar
  55. 55.
    Underwood AJ, Chapman MG, Connell SD (2000) Observations in ecology: you can’t make progress on processes without understanding the patterns. J Exp Mar Bio Ecol 250:97–115.  https://doi.org/10.1016/S0022-0981(00)00181-7 CrossRefPubMedGoogle Scholar
  56. 56.
    U.S. Environmental Protection Agency (1996) Acid digestion of sediments, dludges and soils. http://www.epa.gov. Accessed 14 May 2013
  57. 57.
    Wendelaar Bonga SE, Flik G, Balm PHM, van der Meij JCA (1990) The ultrastructure of chloride cells in the gills of the teleost Oreocbromis mossnmbicus during exposure to acidified water. Cell Tissue Res 259:575–585CrossRefGoogle Scholar
  58. 58.
    Wilson RW (2012) Aluminum. In: Wood CM, Farrell AP, Brauner CJ (eds) Homeostase and toxicology of non-essential metals. Academic Press, Massachusetts, pp 68–123Google Scholar
  59. 59.
    Wrigth DA (1995) Trace metal and major ion interactions in aquatic animals. Mar Pollut Bull 31:8–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of BiologyFederal University of Bahia (UFBA)SalvadorBrazil
  2. 2.Department of Physiological SciencesFederal University of São Carlos (UFSCar)São CarlosBrazil

Personalised recommendations