Advertisement

Biological Trace Element Research

, Volume 188, Issue 1, pp 60–67 | Cite as

Role of Melatonin in Aluminum-Related Neurodegenerative Disorders: a Review

  • José L. Esparza
  • Mercedes Gómez
  • José L. DomingoEmail author
Article

Abstract

Aluminum (Al), a potentially neurotoxic element, provokes various adverse effects on human health such as dialysis dementia, osteomalacia, and microcytic anemia. It has been also associated with serious neurodegenerative diseases such as Alzheimer’s disease (AD), amyotrophic lateral sclerosis, and Parkinsonism dementia of Guam. The “aluminum hypothesis” of AD assumes that the metal complexes can potentiate the rate of aggregation of amyloid-β (Aβ), enhancing the toxicity of this peptide, and being able of contributing to the pathogenesis of AD. It has been supported by a number of analytical, epidemiological, and neurotoxicological studies. On the other hand, melatonin (Mel) is a potent direct free radical scavenger and indirect antioxidant, which acts increasing the activity of important related antioxidant enzymes, and preventing oxidative stress and cell death of neurons exposed to Aβ-induced neurotoxicity. Therefore, Mel might be useful in the treatment of AD by reducing the Aβ generation and by inhibiting mitochondrial cell death pathways. The present review on the role of Mel in Al-related neurodegenerative disorders concludes that the protective effects of this hormone, together with its low toxicity, support the administration of Mel as a potential supplement in the treatment of neurological disorders, in which oxidative stress is involved.

Keywords

Aluminum Neurodegenerative disorders Alzheimer’s disease Melatonin Oxidative stress 

References

  1. 1.
    Gómez M, Esparza JL, Cabré M, García T, Domingo JL (2008) Aluminum exposure through the diet: metal levels in AbetaPP transgenic mice, a model for Alzheimer’s disease. Toxicology 249:214–219Google Scholar
  2. 2.
    Exley C (2013) Human exposure to aluminium. Environ Sci Process Impacts 15:1807–1816Google Scholar
  3. 3.
    Walton JR (2013) Aluminum involvement in the progression of Alzheimer’s disease. J Alzheimers Dis 35:7–43 Erratum in: J Alzheimers Dis 35:875Google Scholar
  4. 4.
    Yokel RA (2013) Aluminum. In: Caballero B (ed) Encyclopedia of human nutrition, 3rd edn. Elsevier, New York City, pp 57–63Google Scholar
  5. 5.
    Exley C (2014) What is the risk of aluminium as a neurotoxin? Expert Rev Neurother 14:589–591Google Scholar
  6. 6.
    Walton JR (2014) Chronic aluminum intake causes Alzheimer’s disease: applying Sir Austin Bradford Hill’s causality criteria. J Alzheimers Dis 40:765–838Google Scholar
  7. 7.
    Alfrey AC, LeGendre GR, Kaehny WD (1976) The dialysis encephalopathy syndrome. Possible aluminium intoxication. N Engl J Med 294:184–188Google Scholar
  8. 8.
    Bushinsky DA, Sprague SM, Hallegot P, Girod C, Chabala JM, Levi-Setti R (1995) Effects of aluminium on bone surface ion composition. J Bone Miner Res 10:1988–1997Google Scholar
  9. 9.
    Chappard D, Bizot P, Mabilleau G, Hubert L (2016) Aluminum and bone: review of new clinical circumstances associated with Al (3+) deposition in the calcified matrix of bone. Morphologie 100:95–105Google Scholar
  10. 10.
    Yokel RA (2000) The toxicology of aluminum in the brain: a review. Neurotoxicology 21:813–828Google Scholar
  11. 11.
    Bondy SC (2014) Prolonged exposure to low levels of aluminum leads to changes associated with brain aging and neurodegeneration. Toxicology 315:1–7Google Scholar
  12. 12.
    Virk SA, Eslick GD (2015) Aluminum levels in brain, serum, and cerebrospinal fluid are higher in Alzheimer’s disease cases than in controls: a series of meta-analyses. J Alzheimers Dis 47:629–638Google Scholar
  13. 13.
    Campbell A, Bondy SC (2000) Aluminium induced oxidative events and its relation to inflammation: a role for the metal in Alzheimer’s disease. Cell Mol Biol 46:721–730Google Scholar
  14. 14.
    Kawahara M, Kato-Negishi M (2011) Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimers Dis.  https://doi.org/10.4061/2011/276393
  15. 15.
    Mikhail K, Hwee Soo J (2018) Alzheimer disease. In: Rakel D (ed) Integrative medicine, 4th edn. Elsevier, New York City, pp 95–107Google Scholar
  16. 16.
    Esparza JL, Gómez M, Romeu M, Mulero M, Sánchez DJ, Mallol J, Domingo JL (2003) Aluminum-induced pro-oxidant effects in rats: protective role of exogenous melatonin. J Pineal Res 35:32–39Google Scholar
  17. 17.
    Rengel Z (2004) Aluminium cycling in the soil-plant-animal-human continuum. Biometals 17:669–689Google Scholar
  18. 18.
    Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498Google Scholar
  19. 19.
    Oshima E, Ishihara T, Yokota O, Nakashima-Yasuda H, Nagao S, Ikeda C, Naohara J, Terada S, Uchitomi Y (2013) Accelerated tau aggregation, apoptosis and neurological dysfunction caused by chronic oral administration of aluminum in a mouse model of tauopathies. Brain Pathol 23:633–644Google Scholar
  20. 20.
    Murphy MP, LeVine H (2010) Alzheimer’s disease and the β-amyloid peptide. J Alzheimers Dis 19:311–323Google Scholar
  21. 21.
    Bozner P, Grishko V, LeDoux SP, Wilson GL, Chyan YC, Pappolla MA (1997) The amyloid beta protein induces oxidative damage of mitochondrial DNA. J Neuropathol Exp Neurol 56:1356–1362Google Scholar
  22. 22.
    Shen YX, Xu SY, Wei W, Sun XX, Liu LH, Yang J, Dong C (2002) The protective effects of melatonin from oxidative damage induced by amyloid beta-peptide 25–35 in middle-aged rats. J Pineal Res 32:85–89Google Scholar
  23. 23.
    Pappolla M, Bozner P, Soto C, Shao H, Robakis NK, Zagorski M (1998) Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J Biol Chem 273:7185–7188Google Scholar
  24. 24.
    Poeggeler B, Miravalle L, Zagorski MG, Wisniewski T, Chyan YJ, Zhang Y, Shao H, Bryant-Thomas T, Vidal R, Frangione B, Ghiso J, Pappolla MA (2001) Melatonin reverses the profibrillogenic activity of apolipoprotein E4 on the Alzheimer amyloid Abeta peptide. Biochemistry 40:14995–15001Google Scholar
  25. 25.
    Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, Wang L, Zhang C, Lin X, Zhang G, Arendash GW (2009) Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res 47:82–96Google Scholar
  26. 26.
    Forbes WF, McLachlan DR (1996) Further thoughts on the aluminum-Alzheimer’s disease link. J Epidemiol Community Health 50:401–403Google Scholar
  27. 27.
    Rondeau V, Commenges D, Jacqmin-Gadda H, Dartigues JF (2000) Relation between aluminum concentrations in drinking water and Alzheimer’s disease: an 8-year follow-up study. Am J Epidemiol 152:59–66Google Scholar
  28. 28.
    Rondeau V, Jacqmin-Gadda H, Commenges D, Helmer C, Dartigues JF (2009) Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol 169:489–496Google Scholar
  29. 29.
    Diaz-Nido J, Avila J (1999) Aluminum induces the in vitro aggregation of bovine brain cytoskeletal proteins. Neurosci Lett 110:221–226Google Scholar
  30. 30.
    Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM, Arnold IM (2014) Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit Rev Toxicol 44:1–80Google Scholar
  31. 31.
    Wirths O, Multhaup G, Bayer TA (2004) A modified β- amyloid hypothesis: intraneuronal accumulation of the β- amyloid peptide—the first step of a fatal cascade. J Neurochem 91:513–520Google Scholar
  32. 32.
    Yang EY, Guo-Ross SX, Bondy SC (1999) The stabilization of ferrous iron by a toxic β-amyloid fragment and by an aluminum salt. Brain Res 799:91–96Google Scholar
  33. 33.
    Exley C (1997) ATP-promoted amyloidosis of an amyloid β-peptide. Neuroreport 8:3411–3414Google Scholar
  34. 34.
    Pratico D, Uryu K, Sung S, Tang S, Trojanowski JQ, Lee VM (2002) Aluminum modulates brain amyloidosis through oxidative stress in APP transgenic mice. FASEB J 16:1138–1140Google Scholar
  35. 35.
    Mrak RE, Sheng JG, Griffin WS (1995) Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Hum Pathol 26:816–823Google Scholar
  36. 36.
    Styren SD, Kamboh MI, DeKosky ST (1998) Expression of differential immune factors in temporal cortex and cerebellum: the role of alpha-1-antichymotrypsin, apolipoprotein E, and reactive glia in the progression of Alzheimer’s disease. J Comp Neurol 396:511–520Google Scholar
  37. 37.
    Beyreuther K, Bush AI, Dyrks T, Hilbich C, König G, Mönning U, Multhaup G, Prior R, Rumble B, Schubert W (1991) Mechanisms of amyloid deposition in Alzheimer’s disease. Ann N Y Acad Sci 640:129–139Google Scholar
  38. 38.
    Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388Google Scholar
  39. 39.
    Leonard SS, Harris GK, Shi X (2004) Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 37:1921–1942Google Scholar
  40. 40.
    van Landeghem GF, Sikstrom C, Beckman LE, Adolfsson R, Beckman L (1998) Transferrin C2, metal binding and Alzheimer’s disease. Neuroreport 9:177–179Google Scholar
  41. 41.
    Kawahara M, Midori K, Kuroda Y (2001) Effects of aluminum on the neurotoxicity of primary cultured neurons and on the aggregation of β-amyloid protein. Brain Res Bull 55:211–217Google Scholar
  42. 42.
    Exley C (2005) The aluminium-amyloid cascade hypothesis and Alzheimer’s disease. Subcell Biochem 38:225–234Google Scholar
  43. 43.
    Morris G, Puri BK, Frye RE (2017) The putative role of environmental aluminium in the development of chronic neuropathology in adults and children. How strong is the evidence and what could be the mechanisms involved? Metab Brain Dis 32:1335–1355Google Scholar
  44. 44.
    Gómez M, Esparza JL, Noqués MR, Giralt M, Cabré M, Domingo JL (2005) Pro-oxidant activity of aluminum in the rat hippocampus: gene expression of antioxidant enzymes after melatonin administration. Free Radic Biol Med 38:104–111Google Scholar
  45. 45.
    Chakrabarty M, Bhat P, Kumari S, D’Souza A, Bairy KL, Chaturvedi A (2012) Cortico-hippocampal salvage in chronic aluminum induced neurodegeneration by Celastrus paniculatus seed oil: Neurobehavioural, biochemical, histological study. J Pharmacol Pharmacother 3:161–171Google Scholar
  46. 46.
    Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of Abeta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449Google Scholar
  47. 47.
    Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14:45–53Google Scholar
  48. 48.
    Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20:4515–4529Google Scholar
  49. 49.
    Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C, Tyagi N (2016) Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies. Mol Neurobiol 53:648–661Google Scholar
  50. 50.
    Moreira PI, Santos MS, Oliveira CR, Shenk JC, Nunomura A, Smith MA, Zhu X, Perry G (2008) Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol Disord Drug Targets 7:3–10Google Scholar
  51. 51.
    Yuan CY, Lee YJ, Hsu GS (2012) Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats. J Biomed Sci 19:51Google Scholar
  52. 52.
    Acuña-Castroviejo D, Escames G, Macías M, Muñoz Hoyos A, Molina Carballo A, Arauzo M, Montes R (1995) Cell protective role of melatonin in the brain. J Pineal Res 19:57–63Google Scholar
  53. 53.
    Tan DX, Manchester LC, Reiter RJ, Plummer BF, Limson J, Weintraub ST, Qi W (2000) Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radic Biol Med 29:1177–1185Google Scholar
  54. 54.
    Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, Pappolla MA (1999) Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid. J Biol Chem 274:21937–21942Google Scholar
  55. 55.
    Reiter RJ, Melchiorri D, Sewerynek E, Poeggeler B, Barlow-Walden L, Chuang J, Ortiz GG, Acuña-Castroviejo D (1995) A review of the evidence supporting melatonin's role as an antioxidant. J Pineal Res 18:1–11Google Scholar
  56. 56.
    Reiter J, Acuna-Castroviejo D, Tan DX, Burkhardt S (2001) Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci 939:200–215Google Scholar
  57. 57.
    Reiter RJ, Tan DX, Manchester LC, Pilar Terron M, Flores LJ, Koppisepi S (2007) Medical implications of melatonin: receptor mediated and receptor independent actions. Adv Med Sci 52:11–28Google Scholar
  58. 58.
    Poeggeler B, Saarela S, Reiter RJ, Tan DX, Chen LD, Manchester LC, Barlow-Walden LR (1994) Melatonina highly potent endogenous radical scavenger and electron donor: new aspects of the oxidation chemistry of this indole accessed in vitro. Ann N Y Acad Sci 738:419–420Google Scholar
  59. 59.
    McArthur AJ, Hunt AE, Gillette MU (1997) Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: activation of protein kinase C at dusk and dawn. Endocrinology 138:627–634Google Scholar
  60. 60.
    Wu YH, Swaab DF (2005) The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 38:145–152Google Scholar
  61. 61.
    Claustrat B, Leston J (2015) Melatonin: physiological effects in humans. Neurochirurgie 61:77–84Google Scholar
  62. 62.
    Dollins AB, Zhdanova IV, Wurtman RJ, Lynch HJ, Deng MH (1994) Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance. Proc Natl Acad Sci U S A 91:1824–1182Google Scholar
  63. 63.
    Guerrero JM, Reiter RJ (2002) Melatonin-immune system relationships. Curr Top Med Chem 2:167–179Google Scholar
  64. 64.
    Esposito E, Cuzzocrea S (2010) Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 8:228–242Google Scholar
  65. 65.
    Tomas-Zapico C, Coto-Montes A (2005) A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res 39:99–104Google Scholar
  66. 66.
    Gong CX, Liu F, Grundke-Iqbal I, Iqbal K (2005) Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Transm 112:813–838Google Scholar
  67. 67.
    Wang XC, Zhang YC, Chatterjie N, Grundke-Iqbal I, Iqbal K, Wang JZ (2008) Effect of melatonin and melatonylvalpromide on beta-amyloid and neurofilaments in N2a cells. Neurochem Res 33:1138–1144Google Scholar
  68. 68.
    Letechipia-Vallejo G, Gonzalez-Burgos I, Cervantes M (2001) Neuroprotective effect of melatonin on brain damage induced by acute global cerebral ischemia in cats. Arch Med Res 32:186–192Google Scholar
  69. 69.
    Zhang J, Guo JD, Xing SH, Gu SL, Dai TJ (2002) The protective effects of melatonin on global cerebral ischemia-reperfusion injury in gerbils. Yao Xue Xue Bao 37:329–333 [Article in Chinese]Google Scholar
  70. 70.
    Ravindra T, Lakshmi NK, Ahuja YR (2006) Melatonin in pathogenesis and therapy of cancer. Indian J Med Sci 60:523–535Google Scholar
  71. 71.
    Di Paolo C, Cabré M, Domingo JL, Gómez M (2014) Melatonin does not modify the concentration of different metals in AβPP transgenic mice. Food Chem Toxicol 70:252–259Google Scholar
  72. 72.
    Alvira D, Tajes M, Verdaguer E, Acuña-Castroviejo D, Folch J, Camins A, Pallas M (2006) Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson's disease. J Pineal Res 40:251–258Google Scholar
  73. 73.
    Letechipía-Vallejo G, López-Loeza E, Espinoza-González V, González-Burgos I, Olvera-Cortés ME, Moralí G, Cervantes M (2007) Long-term morphological and functional evaluation of the neuroprotective effects of post-ischemic treatment with melatonin in rats. J Pineal Res 42:138–146Google Scholar
  74. 74.
    Saravanan KS, Sindhu KM, Mohanakumar KP (2007) Melatonin protects against rotenone-induced oxidative stress in a hemiparkinsonian rat model. J Pineal Res 42:247–253Google Scholar
  75. 75.
    Sharma R, McMillan CR, Niles LP (2007) Neural stem cell transplantation and melatonin treatment in a 6-hydroxydopamine model of Parkinson's disease. J Pineal Res 43:245–254Google Scholar
  76. 76.
    Reiter RJ (1994) The neuroimmune melatonin: its role in antioxidant protection with special reference to the brain. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia. Medpharm Scientific Publishers, Stuttgart, pp 287–296Google Scholar
  77. 77.
    Samantaray S, Sribnick EA, Das A, Knaryan VH, Matzelle DD, Yallapragada AV, Reiter RJ, Ray SK, Banik NL (2008) Melatonin attenuates calpain upregulation, axonal damage and neuronal death in spinal cord injury in rats. J Pineal Res 44:348–357Google Scholar
  78. 78.
    Karabulut-Bulan O, Bayrak BB, Arda-Pirincci P, Sarikaya-Unal G, Us H, Yanardag R (2015) Role of exogenous melatonin on cell proliferation and oxidant/antioxidant system in aluminum-induced renal toxicity. Biol Trace Elem Res 168:141–149Google Scholar
  79. 79.
    Multhaup G, Ruppert T, Schlicksupp A, Hesse L, Beher D, Masters CL, Beyreuther K (1997) Reactive oxygen species and Alzheimer’s disease. Biochem Pharmacol 54:533–539Google Scholar
  80. 80.
    Carvalho C, Correia SC, Cardoso S, Plácido AI, Candeias E, Duarte AI, Moreira PI (2015) The role of mitochondrial disturbances in Alzheimer, Parkinson and Huntington diseases. Expert Rev Neurother 15:867–884Google Scholar
  81. 81.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795Google Scholar
  82. 82.
    Karaaslan C, Suzen S (2015) Antioxidant properties of melatonin and its potential action in diseases. Curr Top Med Chem 15:894–903Google Scholar
  83. 83.
    Mielke R, Moller HJ, Erkinjuntti T, Rosenkranz B, Rother M, Kittner B (1998) Propentofylline in the treatment of vascular dementia and Alzheimer-type dementia: overview of phase I and phase II clinical trials. Alzheimer Dis Assoc Disord 12:29–35Google Scholar
  84. 84.
    Sun AY, Chen YM (1998) Oxidative stress and neurodegenerative disorders. J Biomed Sci 5:401–414Google Scholar
  85. 85.
    Radi E, Formichi P, Battisti C, Federico A (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimers Dis 42:125–152Google Scholar
  86. 86.
    Alavi Naini SM, Soussi-Yanicostas N (2015) Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies? Ox Med Cell Long.  https://doi.org/10.1155/2015/151979
  87. 87.
    Tian X, Zhang L, Wang J, Dai J, Shen S, Yang L, Huang P (2013) The protective effect of hyperbaric oxygen and Ginkgo biloba extract on Aβ25-35-induced oxidative stress and neuronal apoptosis in rats. Behav Brain Res 242:1–8Google Scholar
  88. 88.
    Farina N, Llewellyn D, Isaac MGEKN, Tabet N (2017) Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst Rev 18:4Google Scholar
  89. 89.
    Zhou JN, Liu RY, Kamphorst W, Hofman MA, Swaab DF (2003) Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res 35:125–130Google Scholar
  90. 90.
    Carpentieri A, Díaz de Barboza G, Areco V, Peralta López M, Tolosa de Talamoni N (2012) New perspectives in melatonin uses. Pharmacol Res 65:437–444Google Scholar
  91. 91.
    Benitez-King G (2000) PKC activation by melatonin modulates vimentin intermediate filament organization in N1E-115 cells. J Pineal Res 29:8–14Google Scholar
  92. 92.
    Benitez-King G, Túnez I, Bellon A, Ortíz GG, Antón-Tay F (2003) Melatonin prevents cytoskeletal alterations and oxidative stress induced by okadaic acid in N1E-115 cells. Exp Neurol 182:151–159Google Scholar
  93. 93.
    Allagui MS, Feriani A, Saoudi M, Badraoui R, Bouoni Z, Nciri R, Murat JC, Elfeki A (2014) Effects of melatonin on aluminium-induced neurobehavioral and neurochemical changes in aging rats. Food Chem Toxicol 70:84–93Google Scholar
  94. 94.
    Al-Olayan EM, El-Khadragy MF, Abdel Moneim AE (2015) The protective properties of melatonin against aluminium-induced neuronal injury. Int J Exp Pathol 96:196–202Google Scholar
  95. 95.
    García T, Esparza JL, Giralt M, Romeu M, Domingo JL, Gómez M (2010) Protective role of melatonin on oxidative stress status and RNA expression in cerebral cortex and cerebellum of AbetaPP transgenic mice after chronic exposure to aluminum. Biol Trace Elem Res 135:220–232Google Scholar
  96. 96.
    Abd-Elghaffar SK, El-Sokkary GH, Sharkawy AA (2005) Aluminum-induced neurotoxicity and oxidative damage in rabbits: protective effect of melatonin. Neuro Endocrinol Lett 26:609–616Google Scholar
  97. 97.
    Daniels WM, van Rensburg SJ, van Zyl JM, Taljaard JJ (1998) Melatonin prevents beta-amyloid-induced lipid peroxidation. J Pineal Res 24:78–82Google Scholar
  98. 98.
    Albendea CD, Gómez-Trullén EM, Fuentes-Broto L, Miana-Mena FJ, Millán-Plano S, Reyes-Gonzales MC, Martínez-Ballarín E, García JJ (2007) Melatonin reduces lipid and protein oxidative damage in synaptosomes due to aluminium. J Trace Elem Med Biol 21:261–268Google Scholar
  99. 99.
    Esparza JL, Gómez M, Nogués MR, Paternain JL, Mallol J, Domingo JL (2005) Melatonin reduces oxidative stress and increases gene expression in the cerebral cortex and cerebellum of aluminum-exposed rats. J Pineal Res 39:129–136Google Scholar
  100. 100.
    García T, Esparza JL, Nogués MR, Romeu M, Domingo JL, Gómez M (2010) Oxidative stress status and RNA expression in hippocampus of an animal model of Alzheimer’s disease after chronic exposure to aluminum. Hippocampus 20:218–225Google Scholar
  101. 101.
    García T, Ribes D, Colomina MT, Cabré M, Domingo JL, Gómez M (2009) Evaluation of the protective role of melatonin on the behavioral effects of aluminum in a mouse model of Alzheimer’s disease. Toxicology 265:49–55Google Scholar
  102. 102.
    Di Paolo C, Reverte I, Colomina MT, Domingo JL, Gómez M (2014) Chronic exposure to aluminum and melatonin through the diet: neurobehavioral effects in a transgenic mouse model of Alzheimer disease. Food Chem Toxicol 69:320–329Google Scholar
  103. 103.
    Yumoto S, Kakimi S, Ohsaki A, Ishikawa A (2009) Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer's disease. J Inorg Biochem 103:1579–1584Google Scholar
  104. 104.
    Allagui MS, Hachani R, Saidi S, Feriani A, Murat JC, Kacem K, El Feki A (2018) Pleiotropic protective roles of melatonin against aluminium-induced toxicity in rats. Gen Physiol Biophys 34:415–424Google Scholar
  105. 105.
    Campbell A, Kumar A, La Rosa FG, Prasad KN, Bondy SC (2000) Aluminum increases levels of beta-amyloid and ubiquitin in neuroblastoma but not in glioma cells. Proc Soc Exp Biol Med 223:397–402Google Scholar
  106. 106.
    Campbell A, Prasad KN, Bondy SC (1999) Aluminum-induced oxidative events in cell lines: glioma are more responsive than neuroblastoma. Free Radic Biol Med 26:1166–1171Google Scholar
  107. 107.
    Lukiw WJ (2012) NF-kappaB-regulated, proinflammatory miRNAs in Alzheimer’s disease. Alzheimers Res Ther 4:47Google Scholar
  108. 108.
    Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46Google Scholar
  109. 109.
    Janus C, Flores AY, Xu G, Borchelt DR (2015) Behavioral abnormalities in APPSwe/PS1dE9 mouse model of AD-like pathology: comparative analysis across multiple behavioral domains. Neurobiol Aging 36:2519–2532Google Scholar
  110. 110.
    Rosales-Corral S, Tan DX, Reiter RJ, Valdivia-Velazquez M, Martinez-Barboza G, Acosta-Martinez JP, Ortiz GG (2003) Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid-beta peptide in rat brain: a comparative, in vivo study versus vitamin C and E. J Pineal Res 35:80–84Google Scholar
  111. 111.
    Reiter RJ, Cabrera J, Sainz RM, Mayo JC, Manchester LC, Tan DX (1999) Melatonin as a pharmacological agent against neuronal loss in experimental models of Huntington’s disease, Alzheimer’s disease and parkinsonism. Ann N Y Acad Sci 890:471–485Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Toxicology and Environmental Health, School of Medicine, IISPVUniversitat Rovira i VirgiliReusSpain

Personalised recommendations