Advertisement

Biological Trace Element Research

, Volume 187, Issue 1, pp 51–58 | Cite as

Zinc and Metallothionein in the Development and Progression of Dental Caries

  • Mohammad Tariqur RahmanEmail author
  • Ashfaque Hossain
  • Chew Hooi Pin
  • Noor Azlin Yahya
Article
  • 92 Downloads

Abstract

Chronic oxidative stress and reactive oxygen species (ROS) in oral cavity as well as acidic pH on dental enamel surface due to the metabolic activities of bacterial plaque are the major contributors in the development and progression of dental caries. Along with other factors, deposition or dissolution Ca and Mg mostly determines the re- or demineralization of dental enamel. Zn plays an important role for both Ca and Mg bioavailability in oral cavity. Metallothionein (MT), a group of small molecular weight, cysteine-rich proteins (~ 7 kDa), is commonly induced by ROS, bacterial infection, and Zn. In the current review, we evaluated MT at the junction between the progression of dental caries and its etiologies that are common in MT biosynthesis.

Keywords

Calcium Magnesium Reactive oxygen species Metallothionein Dental caries Zinc 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Robinson C, Shore RC, Brookes SJ, Strafford S, Wood SR, Kirkham J (2000) The chemistry of enamel caries. Crit Rev Oral Biol Med 11:481–495.  https://doi.org/10.1177/10454411000110040601 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Corby PM, Lyons-Weiler J, Bretz WA, Hart TC, Aas JA, Boumenna T, Goss J, Corby AL, Junior HM, Weyant RJ, Paster BJ (2005) Microbial risk indicators of early childhood caries. J Cinical Microbiol 43:5753–5759.  https://doi.org/10.1128/JCM.43.11.5753-5759.2005 CrossRefGoogle Scholar
  3. 3.
    Preza D, Olsen I, Willumsen T, Grinde B, Paster BJ (2009) Diversity and site-specificity of the oral microflora in the elderly. Eur J Clin Microbiol Infect Dis 28:1033–1040.  https://doi.org/10.1007/s10096-009-0743-3 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL (2002) Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 40:1001–1009CrossRefGoogle Scholar
  5. 5.
    Munson MA, Banerjee A, Watson TF, Wade WG (2004) Molecular analysis of the microflora associated with dental caries. J Clin Microbiol 42:3023–3029.  https://doi.org/10.1128/JCM.42.7.3023-3029.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Banerjee A, Yasseri M, Munson M (2002) A method for the detection and quantification of bacteria in human carious dentine using fluorescent in situ hybridisation. J Dent 30:359–363CrossRefGoogle Scholar
  7. 7.
    Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, Leys EJ, Paster BJ (2008) Bacteria of dental caries in primary and permanent teeth in children and young adults. J Cinical Microbiol 46:1407–1417.  https://doi.org/10.1128/JCM.01410-07 CrossRefGoogle Scholar
  8. 8.
    Rahmani M, Ghorchi V, Rezaei F, Vaisi-Raygani A (2015) Evaluation of total antioxidant capacity of saliva in high school students. Glob J Health Sci 8:89–94.  https://doi.org/10.5539/gjhs.v8n4p89 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Moffatt P, Denizeau F (1997) Metallothionein in physiological and physiopathological processes. Drug Metab Rev 29:261–307CrossRefGoogle Scholar
  10. 10.
    Emeny RT, Kasten-Jolly J, Mondal T, Lynes MA, Lawrence DA (2015) Metallothionein differentially affects the host response to Listeria infection both with and without an additional stress from cold-restraint. Cell Stress Chaperones 20:1013–1022.  https://doi.org/10.1007/s12192-015-0630-z CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Qu W, Waalkes MP (2015) Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure. Toxicol Appl Pharmacol 282:267–274.  https://doi.org/10.1016/j.taap.2014.11.014 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Phillippi JA, Klyachko EA, Kenny JP 4th et al (2009) Basal and oxidative stress-induced expression of metallothionein is decreased in ascending aortic aneurysms of bicuspid aortic valve patients. Circulation 119:2498–2506.  https://doi.org/10.1161/CIRCULATIONAHA.108.770776 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    O’Connor KS, Parnell G, Patrick E et al (2014) Hepatic metallothionein expression in chronic hepatitis C virus infection is IFNL3 genotype-dependent. Genes Immun 15:88–94.  https://doi.org/10.1038/gene.2013.66 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bruwer M, Schmid KW, Metz KA et al (2001) Increased expression of metallothionein in inflammatory bowel disease. Inflamm Res 50:289–293.  https://doi.org/10.1007/PL00000246 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066.  https://doi.org/10.3390/ijms14036044 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bauman JW, Liu J, Liu YP, Klaassen CD (1991) Increase in metallothionein produced by chemicals that induce oxidative stress. Toxicol Appl Pharmacol 110:347–354CrossRefGoogle Scholar
  17. 17.
    Hendricks SB, Hill WL (1942) The inoranic constitution of bone. Science 96:255–257.  https://doi.org/10.1126/science.96.2489.255 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Aoba T, Moreno EC (1990) Changes in the nature and composition of enamel mineral during porcine amelogenesis. Calcif Tissue Int 47:356–364CrossRefGoogle Scholar
  19. 19.
    Robinson C, Kirkham J, Brookes SJ et al (1995) The chemistry of enamel development. Int J Dev Biol 39:145–152.  https://doi.org/10.1177/10454411000110040601 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shaw JH, Yen PK (1972) Sodium, potassium, and magnesium concentrations in the enamel and dentin of human and rhesus monkey teeth. J Dent Res 51:95–101.  https://doi.org/10.1177/00220345720510013701 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Brudevold F, Steadman LT, Spinellt MA et al (1963) A study of zinc in human teeth. Arch Oral Biol 8:135–144CrossRefGoogle Scholar
  22. 22.
    Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92:827–839.  https://doi.org/10.1161/01.RES.0000070112.80711.3D CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Larmas M, Thesleff I (1980) Biochemical study of changes in non-specific alkaline phosphomonoesterase activity during mouse tooth ontogeny. Arch Oral Biol 25:791–797CrossRefGoogle Scholar
  24. 24.
    Coleman JE (1992) Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Bomol Struct 21:441–483.  https://doi.org/10.1146/annurev.bb.21.060192.002301 CrossRefGoogle Scholar
  25. 25.
    Weismann K, Hoyer H (1985) Serum alkaline phosphatase and serum zinc levels in the diagnosis and exclusion of zinc deficiency in man. Am J Cinical Nutr 41:1214–1219CrossRefGoogle Scholar
  26. 26.
    Cho Y-E, Lomeda R-AR, Ryu S-H, Sohn HY, Shin HI, Beattie JH, Kwun IS (2007) Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats. Nutr Res Pract 1:113–119.  https://doi.org/10.4162/nrp.2007.1.2.113 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sahlberg C, Reponen P, Tryggvason K, Thesleff I (1999) Timp-1, -2 and -3 show coexpression with gelatinases A and B during mouse tooth morphogenesis. Eur J Oral Sci 107:121–130CrossRefGoogle Scholar
  28. 28.
    Hayyan M, Hashim MA, AlNashef IM (2016) Superoxide ion: generation and chemical implications. Chem Rev 116:3029–3085.  https://doi.org/10.1021/acs.chemrev.5b00407 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ardan T, Kovačeva J, Čejková J (2004) Comparative histochemical and immunohistochemical study on xanthine oxidoreductase/xanthine oxidase in mammalian corneal epithelium. Acta Histochem 106:69–75.  https://doi.org/10.1016/j.acthis.2003.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:14S–22SCrossRefGoogle Scholar
  31. 31.
    Gossrau R, Frederiks WM, van Noorden CJ (1990) Histochemistry of reactive oxygen-species (ROS)-generating oxidases in cutaneous and mucous epithelia of laboratory rodents with special reference to xanthine oxidase. Histochemistry 94:539–544CrossRefGoogle Scholar
  32. 32.
    Buczko P, Zalewska A, Szarmach I (2015) Saliva and oxidative stress in oral cavity and in some systemic disorders. J Physiol Pharmacol 66:3–9PubMedPubMedCentralGoogle Scholar
  33. 33.
    Buczko P, Knas M, Grycz M et al (2017) Orthodontic treatment modifies the oxidant-antioxidant balance in saliva of clinically healthy subjects. Adv Med Sci 62:129–135.  https://doi.org/10.1016/j.advms.2016.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ginsburg I, Kohen R, Shalish M, Varon D, Shai E, Koren E (2013) The oxidant-scavenging abilities in the oral cavity may be regulated by a collaboration among antioxidants in saliva, microorganisms, blood cells and polyphenols: a chemiluminescence-based study. PLoS One 8:e63062.  https://doi.org/10.1371/journal.pone.0063062 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Theilade E (1986) The non-specific theory in microbial etiology of inflammatory periodontal diseases. J Clin Periodontol 13:905–911CrossRefGoogle Scholar
  36. 36.
    Loesche WJ (1992) The specific plaque hypothesis and the antimicrobial treatment of periodontal disease. Dent Update 19:68,70–72,74Google Scholar
  37. 37.
    Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8:263–271.  https://doi.org/10.1177/08959374940080022001 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kajfasz JK, Rivera-Ramos I, Scott-Anne K, Gregoire S, Abranches J, Lemos JA (2015) Transcription of oxidative stress genes is directly activated by SpxA1 and, to a lesser extent, by SpxA2 in Streptococcus mutans. J Bacteriol 197:2160–2170.  https://doi.org/10.1128/JB.00118-15 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Larsen M, Bruun C (1986) In: Thylstrup A, Fejerskov O (eds) Textbook of cariology. Munksgaard, Copenhagen, pp 181–203Google Scholar
  40. 40.
    Tung MS, Eichmiller FC (2004) Amorphous calcium phosphates for tooth mineralization. Compend Contin Educ Dent 25:9–13PubMedPubMedCentralGoogle Scholar
  41. 41.
    Spencer H, Rubio N, Kramer L, Norris C, Osis D (1987) Effect of zinc supplements on the intestinal absorption of calcium. J Am Coll Nutr 6:47–51CrossRefGoogle Scholar
  42. 42.
    Foster AW, Osman D, Robinson NJ (2014) Metal preferences and metallation. J Biol Chem 289:28095–28103.  https://doi.org/10.1074/jbc.R114.588145 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bakar NKA, Taylor DM, Williams DR (1999) The chemical speciation of zinc in human saliva: possible correlation with reduction of the symptoms of the common cold produced by zinc gluconate-containing lozenges. Chem Speciat Bioavailab 11:95–101.  https://doi.org/10.3184/095422999782775672 CrossRefGoogle Scholar
  44. 44.
    Waszkiel D, Opalko K, Łagocka R, Chlubek D (2004) Fluoride and magnesium content in superficial enamel layers of teeth with erosions. Fluoride 37:271–277Google Scholar
  45. 45.
    Chow LC, Brown WE (1975) Formation of CaHPO4-2H2O in tooth enamel as an intermediate product in topical fluoride treatments. J Dent Res 54:65–76.  https://doi.org/10.1177/00220345750540013901 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    LeGeros RZ (1990) Chemical and crystallographic events in the caries process. J Dent Res 69:566–567.  https://doi.org/10.1177/00220345900690S113 CrossRefGoogle Scholar
  47. 47.
    Gaffar A, Blake-Haskins J, Mellberg J (1993) In vivo studies with a dicalcium phosphate dihydrate/MFP system for caries prevention. Int Dent J 43:81–88PubMedPubMedCentralGoogle Scholar
  48. 48.
    Ergun C, Webster TJ, Bizios R, Doremus RH (2002) Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I Struct Microstruct J Biomed Mater Res 59:305–311CrossRefGoogle Scholar
  49. 49.
    Kumar GS, Thamizhavel A, Yokogawa Y et al (2012) Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications. Mater Chem Phys 134:1127–1135.  https://doi.org/10.1016/j.matchemphys.2012.04.005 CrossRefGoogle Scholar
  50. 50.
    Lynch RJM (2011) Zinc in the mouth, its interactions with dental enamel and possible effects on caries; a review of the literature. Int Dent J 61:46–54.  https://doi.org/10.1111/j.1875-595X.2011.00049.x CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Williams DR, Halstead BW (1982) Chelating agents in medicine. J Toxicol Clin Toxicol 19:1081–1115CrossRefGoogle Scholar
  52. 52.
    Bales CW, Freeland-Graves JH, Askey S, Behmardi F, Pobocik RS, Fickel JJ, Greenlee P (1990) Zinc, magnesium, copper, and protein concentrations in human saliva: age- and sex-related differences. Am J Clin Nutr 51:462–469CrossRefGoogle Scholar
  53. 53.
    Krizkova S, Kepinska M, Emri G, Rodrigo MAM, Tmejova K, Nerudova D, Kizek R, Adam V (2016) Microarray analysis of metallothioneins in human diseases—a review. J Pharm Biomed Anal 117:464–473.  https://doi.org/10.1016/j.jpba.2015.09.031 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sturniolo GC, Mestriner C, Lecis PE, D'Odorico A, Venturi C, Irato P, Cecchetto A, Tropea A, Longo G, D'Inca R (1998) Altered plasma and mucosal concentrations of trace elements and antioxidants in active ulcerative colitis. Scand J Gastroenterol 33:644–649CrossRefGoogle Scholar
  55. 55.
    Koh M, Kim H (2001) The effects of metallothionein on the activity of enzymes involved in removal of reactive oxygen species. Measurement 22:362–366Google Scholar
  56. 56.
    Maret W (1994) Oxidative metal release from metallothionein via zinc-thiol/disulfide interchange. Proc Natl Acad Sci U S A 91:237–241CrossRefGoogle Scholar
  57. 57.
    Jiang LJ, Maret W, Vallee BL (1998) The glutathione redox couple modulates zinc transfer from metallothionein to zinc-depleted sorbitol dehydrogenase. Proc Natl Acad Sci U S A 95:3483–3488CrossRefGoogle Scholar
  58. 58.
    Irato P, Santovito G, Piccinni E, Albergoni V (2001) Oxidative burst and metallothionein as a scavenger in macrophages. Immunol Cell Biol 79:251–254.  https://doi.org/10.1046/j.1440-1711.2001.01009.x CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Schwarz MA, Lazo JS, Yalowich JC, Reynolds I, Kagan VE, Tyurin V, Kim YM, Watkins SC, Pitt BR (1994) Cytoplasmic metallothionein overexpression protects NIH 3T3 cells from tert-butyl hydroperoxide toxicity. J Biol Chem 269:15238–15243PubMedPubMedCentralGoogle Scholar
  60. 60.
    De SK, McMaster MT, Andrews GK (1990) Endotoxin induction of murine metallothionein gene expression. J Biol Chem 265:15267–15274PubMedPubMedCentralGoogle Scholar
  61. 61.
    Arizono K, Kagawa S, Hamada H, Ariyoshi T (1995) Nitric oxide mediated metallothionein induction by lipopolysaccharide. Res Commun Mol Pathol Pharmacol 90:49–58PubMedPubMedCentralGoogle Scholar
  62. 62.
    Itoh N, Kasutani K, Muto N, Otaki N, Kimura M, Tanaka (1996) Blocking effect of anti-mouse interleukin-6 monoclonal antibody and glucocorticoid receptor antagonist, RU38486, on metallothionein-inducing activity of serum from lipopolysaccharide-treated mice. Toxicology 112:29–36CrossRefGoogle Scholar
  63. 63.
    Bergenholtz G (1981) Inflammatory response of the dental pulp to bacterial irritation. J Endod 7:100–104.  https://doi.org/10.1016/S0099-2399(81)80122-7 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Chavez de Paz LE, Bergenholtz G, Svensater G (2010) The effects of antimicrobials on endodontic biofilm bacteria. J Endod 36:70–77.  https://doi.org/10.1016/j.joen.2009.09.017 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hwang T-L, Chen H-Y, Changchien T-T et al (2013) The cytotoxicity of mercury chloride to the keratinocytes is associated with metallothionein expression. Biomed Rep 1:379–382.  https://doi.org/10.3892/br.2013.65 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Emri E, Miko E, Bai P, Boros G, Nagy G, Rózsa D, Juhász T, Hegedűs C, Horkay I, Remenyik É, Emri G (2015) Effects of non-toxic zinc exposure on human epidermal keratinocytes. Met Integr Biometal Sci 7:499–507.  https://doi.org/10.1039/c4mt00287c CrossRefGoogle Scholar
  67. 67.
    Tamura Y, Wysocki GP, Cherian MG (1999) Immunohistochemical localization of metallothionein in the developing teeth of cadmium-injected rats. Arch Oral Biol 44:49–53CrossRefGoogle Scholar
  68. 68.
    Hishikawa Y, Koji T, Dhar DK, Kinugasa S, Yamaguchi M, Nagasue N (1999) Metallothionein expression correlates with metastatic and proliferative potential in squamous cell carcinoma of the oesophagus. Br J Cancer 81:712–720.  https://doi.org/10.1038/sj.bjc.6690753 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Tan Y, Sinniah R, Bay BH, Singh G (1999) Metallothionein expression and nuclear size in benign, borderline, and malignant serous ovarian tumours. J Pathol 189:60–65.  https://doi.org/10.1002/(SICI)1096-9896(199909)189:1<60::AID-PATH387>3.0.CO;2-J CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Fresno M, Wu W, Rodriguez JM, Nadji M (1993) Localization of metallothionein in breast carcinomas. An immunohistochemical study. Virchows Arch A Pathol Anat Histopathol 423:215–219CrossRefGoogle Scholar
  71. 71.
    Hiura T, Khalid H, Yamashita H, Tokunaga Y, Yasunaga A, Shibata S (1998) Immunohistochemical analysis of metallothionein in astrocytic tumors in relation to tumor grade, proliferative potential, and survival. Cancer 83:2361–2369CrossRefGoogle Scholar
  72. 72.
    Sens MA, Somji S, Lamm DL, Garrett SH, Slovinsky F, Todd JH, Sens DA (2000) Metallothionein isoform 3 as a potential biomarker for human bladder cancer. Environ Health Perspect 108:413–418CrossRefGoogle Scholar
  73. 73.
    Landin MA, Nygård S, Shabestari MG et al (2015) Mapping the global mRNA transcritome during development of the murine first molar. Front Genet 6.  https://doi.org/10.3389/fgene.2015.00047
  74. 74.
    Irie Y, Mori F, Keung WM, Mizushima Y, Wakabayashi K (2004) Expression of neuronal growth inhibitory factor (metallothionein-III ) in the salivary gland. Physiol Res 53:719–723PubMedPubMedCentralGoogle Scholar
  75. 75.
    Sunardhi-Widyaputra S, van den Oord JJ, Van Houdt K et al (1995) Identification of metallothionein- and parathyroid hormone-related peptide (PTHrP)-positive cells in salivary gland tumours. Pathol Res Pract 191:1092–1098.  https://doi.org/10.1016/S0344-0338(11)80653-9 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Sogawa CA, Sogawa N, Yamamoto T et al (2001) Localization of metallothionein (MT) and expression of MT isoforms induced by cadmium in rat dental pulp. Jpn J Pharmacol 86:65–72.  https://doi.org/10.1254/jjp.86.65 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Izumi T, Eida T, Matsumoto N, Inoue H (2007) Immunohistochemical localization of metallothionein in dental pulp after cavity preparation of rat molars. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:e133–e137.  https://doi.org/10.1016/j.tripleo.2007.04.023 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Rahman MT, Haque N, Abu Kasim NH, De Ley M (2017) Origin, function, and fate of metallothionein in human blood. Rev Physiol Biochem Pharmacol.  https://doi.org/10.1007/112_2017_1
  79. 79.
    Robinson JM (2008) Reactive oxygen species in phagocytic leukocytes. Histochem Cell Biol 130:281–297.  https://doi.org/10.1007/s00418-008-0461-4 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kehl-Fie TE, Skaar EP (2010) Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol 14:218–224.  https://doi.org/10.1016/j.cbpa.2009.11.008 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N, Garcia C, Munro KA, Chazin WJ, Skaar EP (2011) Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10:158–164.  https://doi.org/10.1016/j.chom.2011.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Corbin BD, Seeley EH, Raab A, Feldmann J, Miller MR, Torres VJ, Anderson KL, Dattilo BM, Dunman PM, Gerads R, Caprioli RM, Nacken W, Chazin WJ, Skaar EP (2008) Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319:962–965.  https://doi.org/10.1126/science.1152449 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Rahman MT, Karim MM (2018) Metallothionein: a potential link in the regulation of zinc in nutritional immunity. Biol Trace Elem Res 182:1–13.  https://doi.org/10.1007/s12011-017-1061-8 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Selwitz RH, Ismail AI, Pitts NB (2007) Dental caries. Lancet 369:51–59.  https://doi.org/10.1016/S0140-6736(07)60031-2 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Larmas MA, Sandor GK (2013) Solid nomenclature: the bedrock of science. Similarities and dissimilarities in phenomena and cells of tooth and bone ontogeny. Anat Rec 296:564–567.  https://doi.org/10.1002/ar.22671 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Mohammad Tariqur Rahman
    • 1
    Email author
  • Ashfaque Hossain
    • 2
  • Chew Hooi Pin
    • 3
  • Noor Azlin Yahya
    • 3
  1. 1.Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department Medical Microbiology and ImmunologyRAK Medical UniversityRas al-KhaimahUAE
  3. 3.Department of Restorative Dentistry, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations