Advertisement

Biological Trace Element Research

, Volume 187, Issue 1, pp 163–171 | Cite as

Chronic Cadmium Exposure Accelerates the Development of Atherosclerosis and Induces Vascular Dysfunction in the Aorta of ApoE−/− Mice

  • T. F. Oliveira
  • P. R. Batista
  • M. A. Leal
  • B. P. Campagnaro
  • B. V. Nogueira
  • D. V. Vassallo
  • S. S. Meyrelles
  • Alessandra Simão PadilhaEmail author
Article
  • 161 Downloads

Abstract

Cadmium exposure is related to cardiovascular diseases, including hypertension, atherosclerosis, increased oxidative stress, endothelial dysfunction, and specific biochemical changes induced by this metal. Thus, we aimed to investigate whether cadmium exposure induces endothelial dysfunction, accelerates atherosclerotic plaque formation in the aorta, and enhances oxidative stress in apolipoprotein E knockout (ApoE−/−) mice. Experiments were performed in 14-week-old male wild-type and ApoE−/− mice. ApoE−/− mice received cadmium (CdCl2 100 mg/L in drinking water for 28 days) or vehicle (distilled water). After treatment, vascular reactivity to phenylephrine, acetylcholine, and sodium nitroprusside was analyzed using isolated aorta. Bone marrow cells were isolated to assess the production of nitric oxide and reactive oxygen and nitrogen species. ApoE−/− cadmium-treated mice had higher cholesterol levels than non-exposed mice. Cadmium exposure decreased the vasodilatation response to acetylcholine in aortic ring of ApoE−/− mice, though no changes in phenylephrine or sodium nitroprusside responses were observed. l-NAME reduced vasodilator responses to acetylcholine; this effect was lower in ApoE−/− cadmium-treated mice, suggesting reduction in nitric oxide (NO) bioavailability. Moreover, in bone marrow cells, cadmium decreased cytoplasmic levels of NO and increased superoxide anions, hydrogen peroxide, and peroxynitrite in ApoE−/− mice. Morphological analysis showed that cadmium exposure increased plaque deposition in the aorta by approximately 3-fold. Our results suggest that cadmium exposure induces endothelial dysfunction in ApoE−/− mice. Moreover, cadmium increased total cholesterol levels, which may promote the early development of atherosclerosis in the aorta of ApoE−/− mice. Our findings support the hypothesis that cadmium exposure might increase the risk of atherosclerosis.

Keywords

Cadmium Atherosclerosis Endothelial dysfunction Oxidative stress 

Notes

Funding information

This study was supported by grants from CNPq (nos. 303390/2015-8 and 457897/2014-7), CAPES, and FAPES (nos. 03/2016; 239/2016 and 88/2017).

Compliance with Ethical Standards

All experimental procedures were performed in accordance with the guidelines for the care and handling of laboratory animals as recommended by the National Institutes of Health (NIH), and the study protocols were previously approved by the Ethics Committee of the Federal University of Espirito Santo (071/2016 CEUA-UFES).

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Eum KD, Lee MS, Paek D (2008) Cadmium in blood and hypertension. Sci Total Environ 407:147–153.  https://doi.org/10.1016/j.scitotenv.2008.08.037 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Almenara CC, Broseghini-Filho GB, Vescovi MV, Angeli JK, Faria TO, Stefanon I et al (2013) Chronic cadmium treatment promotes oxidative stress and endothelial damage in isolated rat aorta. PLoS One 8(7):e68418.  https://doi.org/10.1371/journal.pone.0068418 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Donpunha W, Kukongviriyapan U, Sompamit K, Pakdeechote P, Kukongviriyapan V, Pannangpetch P (2011) Protective effect of ascorbic acid on cadmium-induced hypertension and vascular dysfunction in mice. Biometals 24:105–115.  https://doi.org/10.1007/s10534-010-9379-0 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tellez-Plaza M, Navas-Acien A, Crainiceanu CM, Guallar E (2008) Cadmium exposure and hypertension in the 1999–2004 National Health and Nutrition Examination Survey (NHANES). Environ Health Perspect 116:51–56.  https://doi.org/10.1289/ehp.10764 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Knoflach M, Messner B, Shen YH, Frotschnig S, Liu G, Pfaller K, Wang X, Matosevic B, Willeit J, Kiechl S, Laufer G, Bernhard D (2011) Non-toxic cadmium concentrations induce vascular inflammation and promote atherosclerosis. Circ J 75:2491–2495CrossRefGoogle Scholar
  6. 6.
    Navas-Acien A, Selvin E, Sharrett AR, Calderon-Aranda E, Silbergeld E, Guallar E (2004) Lead, cadmium, smoking, and increased risk of peripheral arterial disease. Circulation 109:3196–3201CrossRefGoogle Scholar
  7. 7.
    Liu J, Qu W, Kadiiska MB (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol 238:209–214.  https://doi.org/10.1016/j.taap.2009.01.029 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Tellez-Plaza M, Guallar E, Howard BV, Umans JG, Francesconi KA, Goessler W, Silbergeld EK, Devereux RB, Navas-Acien A (2013) Cadmium exposure and incident cardiovascular disease. Epidemiology 24:421–429.  https://doi.org/10.1097/EDE.0b013e31828b0631 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tellez-Plaza M, Navas-Acien A, Menke A, Crainiceanu CM, Pastor-Barriuso R, Guallar E (2012) Cadmium exposure and all-cause and cardiovascular mortality in the U.S. general population. Environ Health Perspect 120:1017–1022.  https://doi.org/10.1289/ehp.1104352 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Afridi HI, Kazi TG, Kazi NG, Jamali MK, Arain MB, Sirajuddin, Baig JA, Kandhro GA, Wadhwa SK, Shah AQ (2010) Evaluation of cadmium, lead, nickel and zinc status in biological samples of smokers and nonsmokers hypertensive patients. J Hum Hypertens 24:34–43CrossRefGoogle Scholar
  11. 11.
    Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719CrossRefGoogle Scholar
  12. 12.
    Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ et al (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137:65–83.  https://doi.org/10.1016/S0378-4274(02)00381-8 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Abu-Hayyeh S, Sian M, Jones KG, Manuel A, Powell JT (2001) Cadmium accumulation in aortas of smokers. Arterioscler Thromb Vasc Biol 21:863–867CrossRefGoogle Scholar
  14. 14.
    Faroon O, Ashizawa A, Wright S, Tucker P, Jenkins K, Ingerman L et al (2012) Toxicological profile for cadmiumGoogle Scholar
  15. 15.
    Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336CrossRefGoogle Scholar
  16. 16.
    Wolf MB, Baynes JW (2007) Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. Biometals 20:73–81.  https://doi.org/10.1007/s10534-006-9016-0 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Manca D, Ricard AC, Tra HV, Chevalier G (1994) Relation between lipid peroxidation and inflammation in the pulmonary toxicity of cadmium. Arch Toxicol 68:364–369CrossRefGoogle Scholar
  18. 18.
    Chevalier G, Ricard AC, Manca D (1994) Age-related variations of lipid peroxidation in cadmium-treated rats. Toxicol Ind Health 10:43–51CrossRefGoogle Scholar
  19. 19.
    Angeli JK, Cruz Pereira CA, de Oliveira FT, Stefanon I, Padilha AS, Vassallo DV (2013) Cadmium exposure induces vascular injury due to endothelial oxidative stress: the role of local angiotensin II and COX-2. Free Radic Biol Med 65:838–848.  https://doi.org/10.1016/j.freeradbiomed.2013.08.167 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Broseghini-Filho GB, Almenara CC, Vescovi MV, Faria TO, Vassallo DV, Angeli JK et al (2015) Acute cadmium exposure reduces the local angiotensin I converting enzyme activity and increases the tissue metal content. Biol Trace Elem Res 166:149–156.  https://doi.org/10.1007/s12011-015-0250-6 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mitra S, Deshmukh A, Sachdeva R, Lu J, Mehta JL (2011) Oxidized low-density lipoprotein and atherosclerosis implications in antioxidant therapy. Am J Med Sci 342:135–142.  https://doi.org/10.1097/MAJ.0b013e318224a147 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chisolm GM, Steinberg D (2000) The oxidative modification hypothesis of atherogenesis: an overview. Free Radic Biol Med 28:1815–1826CrossRefGoogle Scholar
  23. 23.
    Leeuwenburgh C, Hardy MM, Hazen SL, Wagner P, Oh-ishi S, Steinbrecher UP, Heinecke JW (1997) Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem 272:1433–1436CrossRefGoogle Scholar
  24. 24.
    Mulvany MJ, Halpern W (1977) Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 41:19–26CrossRefGoogle Scholar
  25. 25.
    Meyrelles SS, Peotta VA, Pereira TM, Vasquez EC (2011) Endothelial dysfunction in the apolipoprotein E-deficient mouse: insights into the influence of diet, gender and aging. Lipids Health Dis 10:211.  https://doi.org/10.1186/1476-511X-10-211 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Campagnaro BP, Tonini CL, Doche LM, Nogueira BV, Vasquez EC, Meyrelles SS (2013) Renovascular hypertension leads to DNA damage and apoptosis in bone marrow cells. DNA Cell Biol 32:458–466.  https://doi.org/10.1089/dna.2013.2065 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Everett CJ, Frithsen IL (2008) Association of urinary cadmium and myocardial infarction. Environ Res 106:284–286CrossRefGoogle Scholar
  28. 28.
    Fagerberg B, Barregard L, Sallsten G, Forsgard N, Ostling G, Persson M et al (2015) Cadmium exposure and atherosclerotic carotid plaques—results from the Malmo diet and cancer study. Environ Res 136:67–74.  https://doi.org/10.1016/j.envres.2014.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yoopan N, Watcharasit P, Wongsawatkul O, Piyachaturawat P, Satayavivad J (2008) Attenuation of eNOS expression in cadmium-induced hypertensive rats. Toxicol Lett 176:157–161.  https://doi.org/10.1016/j.toxlet.2007.11.002 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gokalp O, Ozdem S, Donmez S, Dogan M, Demirin H, Kara HY et al (2009) Impairment of endothelium-dependent vasorelaxation in cadmium-hypertensive rats. Toxicol Ind Health 25:447–453CrossRefGoogle Scholar
  31. 31.
    Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, Kalea AZ, Lu Y, Rosario RH, Oruganti S, Nikolla Z, Belov D, Lalla E, Ramasamy R, Yan SF, Schmidt AM (2008) Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE-/- mice. J Clin Invest 118:183–194CrossRefGoogle Scholar
  32. 32.
    Houston MC (2007) The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern Ther Health Med 13:S128–S133PubMedPubMedCentralGoogle Scholar
  33. 33.
    Trostchansky A, Batthyany C, Botti H, Radi R, Denicola A, Rubbo H (2001) Formation of lipid-protein adducts in low-density lipoprotein by fluxes of peroxynitrite and its inhibition by nitric oxide. Arch Biochem Biophys 395:225–232CrossRefGoogle Scholar
  34. 34.
    Asgary S, Movahedian A, Keshvari M, Taleghani M, Sahebkar A, Sarrafzadegan N (2017) Serum levels of lead, mercury and cadmium in relation to coronary artery disease in the elderly: a cross-sectional study. Chemosphere 180:540–544.  https://doi.org/10.1016/j.chemosphere.2017.03.069 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fagerberg B, Bergstrom G, Boren J, Barregard L (2012) Cadmium exposure is accompanied by increased prevalence and future growth of atherosclerotic plaques in 64-year-old women. J Intern Med 272:601–610.  https://doi.org/10.1111/j.1365-2796.2012.02578.x CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bergstrom G, Fagerberg B, Sallsten G, Lundh T, Barregard L (2015) Is cadmium exposure associated with the burden, vulnerability and rupture of human atherosclerotic plaques? PLoS One 10:e0121240.  https://doi.org/10.1371/journal.pone.0121240 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Esterbauer H, Gebicki J, Puhl H, Jurgens G (1992) The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med 13:341–390CrossRefGoogle Scholar
  38. 38.
    Prabu SM, Shagirtha K, Renugadevi J (2010) Amelioration of cadmium-induced oxidative stress, impairment in lipids and plasma lipoproteins by the combined treatment with quercetin and alpha-tocopherol in rats. J Food Sci 75:T132–T140.  https://doi.org/10.1111/j.1750-3841.2010.01757.x CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ghosh K, N I (2018) Cadmium treatment induces echinocytosis, DNA damage, inflammation, and apoptosis in cardiac tissue of albino Wistar rats. Environ Toxicol Pharmacol 59:43–52.  https://doi.org/10.1016/j.etap.2018.02.009 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539.  https://doi.org/10.2174/1568026013394831 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Fan LM, Li JM (2014) Evaluation of methods of detecting cell reactive oxygen species production for drug screening and cell cycle studies. J Pharmacol Toxicol Methods 70:40–47.  https://doi.org/10.1016/j.vascn.2014.03.173 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Urao N, Ushio-Fukai M (2013) Redox regulation of stem/progenitor cells and bone marrow niche. Free Radic Biol Med 54:26–39.  https://doi.org/10.1016/j.freeradbiomed.2012.10.532 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Campagnaro BP, Tonini CL, Nogueira BV, Casarini DE, Vasquez EC, Meyrelles SS (2013) DNA damage and augmented oxidative stress in bone marrow mononuclear cells from angiotensin-dependent hypertensive mice. Int J Hypertens 2013:305202.  https://doi.org/10.1155/2013/305202 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tonini CL, Campagnaro BP, Louro LP, Pereira TM, Vasquez EC, Meyrelles SS (2013) Effects of aging and hypercholesterolemia on oxidative stress and DNA damage in bone marrow mononuclear cells in apolipoprotein E-deficient mice. Int J Mol Sci 14:3325–3342.  https://doi.org/10.3390/ijms14023325 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bonthu S, Heistad DD, Chappell DA, Lamping KG, Faraci FM (1997) Atherosclerosis, vascular remodeling, and impairment of endothelium-dependent relaxation in genetically altered hyperlipidemic mice. Arterioscler Thromb Vasc Biol 17:2333–2340CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. F. Oliveira
    • 1
  • P. R. Batista
    • 1
    • 2
  • M. A. Leal
    • 1
  • B. P. Campagnaro
    • 3
  • B. V. Nogueira
    • 4
  • D. V. Vassallo
    • 1
    • 2
  • S. S. Meyrelles
    • 1
  • Alessandra Simão Padilha
    • 1
    Email author
  1. 1.Physiological Sciences Graduate Program, Health Sciences CenterUniversidade Federal do Espírito Santo CCS/UFESVitoriaBrazil
  2. 2.Escola Superior de Ciências da Santa Casa de Misericórdia de Vitoria (EMESCAM)VitóriaBrazil
  3. 3.Pharmaceutical Sciences Graduate ProgramUniversidade de Vila Velha (UVV)Vila VelhaBrazil
  4. 4.Department of Morphology, Health Sciences CenterUniversidade Federal do Espírito SantoVitoriaBrazil

Personalised recommendations