Advertisement

Biological Trace Element Research

, Volume 187, Issue 1, pp 9–21 | Cite as

Health Risk Assessment and Urinary Excretion of Children Exposed to Arsenic through Drinking Water and Soils in Sonora, Mexico

  • Leticia García-Rico
  • Diana Meza-Figueroa
  • A. Jay Gandolfi
  • Carlos Ibañez del Rivero
  • Marco A. Martínez-Cinco
  • Maria M. Meza-MontenegroEmail author
Article

Abstract

Environmental arsenic exposure is associated with increased risk of non-cancerous chronic diseases and a variety of cancers in humans. The aims of this study were to carry out for the first time a health risk assessment for two common arsenic exposure routes (drinking water and soil ingestion) in children living in the most important agricultural areas in the Yaqui and Mayo valleys in Sonora, Mexico. Drinking water sampling was conducted in the wells of 57 towns. A cross-sectional study was done in 306 children from 13 villages in the valleys. First morning void urine samples were analyzed for inorganic arsenic (InAs) and monomethyl and dimethyl arsenic (MMA and DMA) by HPLC/ICP-MS. The results showed a wide range of arsenic levels in drinking water between 2.7 and 98.7 μg As/L. Arsenic levels in agricultural and backyard soils were in the range of < 10–27 mg As/kg. The hazard index (HI) = ∑hazard quotient (HQ) for drinking water, agricultural soil, and backyard soil showed values > 1 in 100% of the study towns, and the carcinogenic risk (CR) was greater than 1E−04 in 85%. The average of arsenic excreted in urine was 31.7 μg As/L, and DMA had the highest proportion in urine, with averages of 77.8%, followed by InAs and MMA with 11.4 and 10.9%, respectively, percentages similar to those reported in the literature. Additionally, positive correlations between urinary arsenic levels and HI values were found (r = 0.59, P = 0.000). These results indicated that this population is at high risk of developing chronic diseases including cancer.

Keywords

Arsenic Drinking water Soil Health risk assessment Children Urinary arsenic 

Notes

Acknowledgments

We are grateful to Dr. A. Jay Gandolfi of the University of Arizona for making the arsenic investigation in Sonora, Mexico, a reality, and for his support in consolidating our research group in the arsenic field. In addition, we would like to thank Dr. Paul W. Kilpatrick for helping with the English edition. This research was supported by CONACYT-FONSALUD Grant 000000233976, the NIEHS Superfund Basic Research Program at the University of Arizona (ES 04940), and the PROFAPI_00396 and PROFAPI_539 Grants at ITSON.

Compliance with Ethical Standards

The protocol of urine collection was approved by the Human Subject Committee of the Technological Institute of Sonora (ITSON). A signed consent for each participant and a signed parental consent for each child were obtained.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Liang CP, Wang SW, Kao YH, Chen JS (2016) Health risk assessment of groundwater arsenic pollution in southern Taiwan. Environ Geochem Health 38:1271–1281CrossRefGoogle Scholar
  2. 2.
    Cubadda F, D’Amato M, Mancini FR, Aureli F, Raggi A, Busani L, Mantovani A (2015) Assessing human exposure to inorganic arsenic in high-arsenic areas of Latium: a biomonitoring study integrated with indicators of dietary intake. Ann Ig 27:39–51PubMedPubMedCentralGoogle Scholar
  3. 3.
    Beamer PI, Klimecki WT, Loh M, Van Horne YO, Sugeng AJ, Lothrop N, Billheimer D, Guerra S, Lantz RC, Canales RA, Martinez FD (2016) Association of children’s urinary CC16 levels with arsenic concentrations in multiple environmental media. Int J Environ Res Public Health 13(5):521CrossRefGoogle Scholar
  4. 4.
    Kurzius-Spencer M, Burgess JL, Harris RB, Hartz V, Roberge J, Huang S, Hsu C-H, O’Rourke MK (2014) Contribution of diet to aggregate arsenic exposures—an analysis across populations. J Exp Sci Environ Epidemiol 24(2):156–162CrossRefGoogle Scholar
  5. 5.
    Kurzius-Spencer M, O’Rourke MK, Hsu C-H, Hartz V, Harris RB, Burgess JL (2013) Measured versus modeled dietary arsenic and relation to urinary arsenic excretion and total exposure. J Exp Sci and Environ Epidemiol 23:442–449CrossRefGoogle Scholar
  6. 6.
    Tang J, Bian J, Li Z, Li Y, Yang W, Liang S (2017) Comparative study on the hydrogeochemical environment at the major drinking water based arsenism areas. Appl Geochem 77:62–67CrossRefGoogle Scholar
  7. 7.
    Bondu R, Cloutier V, Rosa E, Benzaazoua M (2016) A review and evaluation of the impacts of climate change on geogenic arsenic in groundwater from fractured bedrock aquifers. Water Air Soil Poll 227(9):296CrossRefGoogle Scholar
  8. 8.
    Bundschuh J, Nath B, Bhattacharya P, Liu CW, Armienta MA, Moreno López MV, Lopez D, Jean JS, Cornejo L, Macedo LFL, Filho AT (2012) Review: arsenic in the human food chain: the Latin American perspective. Sci Total Environ 429:92–106CrossRefGoogle Scholar
  9. 9.
    Sharratt BS, Feng G (2006) Evidence of direct suspension of soil particulates on the Columbia Plateau. International Conference on Aeolian ResearchGoogle Scholar
  10. 10.
    Moreno-Rodríguez V, Del Rio-Salas R, Adams DK, Ochoa-Landin L, Zepeda J, Gómez-Alvarez A, Palafox-Reyes J, Meza-Figueroa D (2015) Historical trends and sources of TSP in a Sonoran desert city: can the North America Monsoon enhance dust emissions? Atmos Environ 110:111–121CrossRefGoogle Scholar
  11. 11.
    Roberge J, O’Rourke MK, Meza-Montenegro MM, Gutiérrez-Millán LE, Burgess JL, Harris RB (2012) Binational arsenic exposure survey: methodology and estimated arsenic intake from drinking water and urinary arsenic concentrations. Int J Environ Res Public Health 9:1051–1067CrossRefGoogle Scholar
  12. 12.
    Burgess JL, Meza MM, Josyula AB, Poplin GS, Kopplin MJ, McClellen H, Sturup S, Lantz RC (2007) Environmental arsenic exposure and urinary 8-OHdG in Arizona and Sonora. Clin Toxicol 45:490–498CrossRefGoogle Scholar
  13. 13.
    Caceres D, Pino P, Montesinos N, Atalah E, Amigo H, Loomis D (2005) Exposure to organic arsenic in drinking water and total urinary arsenic concentration in a Chilean population. Environ Res 98:151–159CrossRefGoogle Scholar
  14. 14.
    Burgess JL, Kurzius-Spencer M, O’Rourke MK, Littau SR, Roberge J, Meza-Montenegro MM, Gutiérrez-Millán LE, Harris RB (2013) Environmental arsenic exposure and serum matrix metalloproteinase-9. Expo Sci Environ Epidemiol 23(2):163–169CrossRefGoogle Scholar
  15. 15.
    Calderon RL, Hudgens EE, Carty C, He B, Le XC, Rogers J, Thomas DJ (2013) Biological and behavioral factors modify biomarkers of arsenic exposure in a U.S. population. Environ Res 126:134–144CrossRefGoogle Scholar
  16. 16.
    Mendoza-Cano O, Sánchez-Piña RA, Barrón-Quintana J, Cuevas-Arellano HB, Escalante-Minakata P, Solano-Barajas R (2017) Riesgos potenciales de salud por consumo de agua con arsénico en Colima, México. Salud Publica Mex 59(1):34–40CrossRefGoogle Scholar
  17. 17.
    Meza-Montenegro MM, Gandolfi AJ, Santana-Alcántar ME, Gomez-Alvarez A, Mendivil-Quijada H, Valencia M, Meza-Figueroa D (2012) Metals in residential soils and cumulative risk assessment in Yaqui and Mayo agricultural valleys, northern Mexico. Sci Total Environ 433:472–481CrossRefGoogle Scholar
  18. 18.
    Meza-Montenegro MM, Valenzuela-Quintanar AI, Balderas-Cortés JJ, Yañez-Estrada L, Gutiérrez-Coronado ML, Cuevas-Robles A, Gandolfi AJ (2013) Exposure assessment of organochlorine pesticides, arsenic, and lead in children from the major agricultural areas in Sonora, Mexico. Arch Environ Contam Toxicol 64:519–527CrossRefGoogle Scholar
  19. 19.
    Instituto Nacional de Estadística y Geografía (INEGI). 2010. Microdatos. http://www.inegi.org.mx/est/contenidos/proyectos/accesomicrodatos/. Accessed 06 Sep 2017
  20. 20.
    Meza MM, Kopplin MJ, Burgess JL, Gandolfi AJ (2008) Urinary arsenic methylation in children exposed at low-level in the Yaqui Valley, Sonora. J Environ Toxicol Chem 90(5):957–970CrossRefGoogle Scholar
  21. 21.
    NOM-230-SSA1–2002. Norma Oficial Mexicana Salud ambiental. Agua para uso y consumo humano. Requisitos sanitarios que se deben cumplir en los sistemas de abastecimiento públicos y privados durante el manejo del agua. Procedimientos sanitarios para el muestreo. Diario Oficial de la Federación 2005Google Scholar
  22. 22.
    United States Environmental Protection Agency. 2007. Microwave assisted acid digestion of aqueous samples and extracts, Method 3015A. https://www.epa.gov/hw-sw846/sw-846-test-method-3015a-microwave-assisted-acid-digestion-aqueous-samples-and-extracts. Accessed 07 Sep 2017
  23. 23.
    Meza MM, Yu L, Rodríguez YY, Guiad M, Thompson D, Gandolfi AJ, Klimecki WT (2005) Developmentally restricted genetic determinants of human arsenic metabolism: association between genetic urinary methylated arsenic and CYT 19 polymorphism in children. Environ Health Persp 113:775–781CrossRefGoogle Scholar
  24. 24.
    United States Environmental Protection Agency. 2009. Highlights of the Child-Specific Exposure Factors Handbook (Final Report). USEPA, Washington, DC, EPA/600/R-08/135, 2009Google Scholar
  25. 25.
    NOM-127-SSA1–1994. Norma Oficial Mexicana. Agua para uso y consumo humano. Límites permisibles de calidad. Diario Oficial de la Federación 2000Google Scholar
  26. 26.
    NOM-147-SEMARNAT/SSA1–2004. NORMA Oficial Mexicana, Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. Diario Oficial de la Federación 2007Google Scholar
  27. 27.
    World Health Organization (WHO). 2001. Arsenic and Arsenic Compounds, 2nd edn. Environmental Health Criteria 224. Geneva 2001. (accessed Sep. 6 2017). http://www.inchem.org/documents/ehc/ehc/ehc224.htm
  28. 28.
    Wyatt CJ, Fimbres C, Romo L, Mendéz RO, Grijalva M (1998) Incidence of heavy metal contamination in water supplies in Northern Mexico. Environ Res 76:114–119CrossRefGoogle Scholar
  29. 29.
    Meza MM, Kopplin MJ, Burgess JL, Gandolfi AJ (2004) Arsenic drinking water exposure and urinary excretion among adults in the Yaqui Valley, Sonora México. Environ Res 96:119–126CrossRefGoogle Scholar
  30. 30.
    Maldonado JF, Meza-Figueroa D, Dévora AG, García-Rico L, Burgess JL, Lantz RC, Yáñez-Estrada L, Martínez-Cinco MA, Balderas JJ, Mondaca I, Meza-Montenegro MM (In Press 2018) An integrated health risk assessment of indigenous children exposed to arsenic in Sonora, Mexico Human Ecol Risk Assess doi:  https://doi.org/10.1080/10807039.2018.1449098
  31. 31.
    Recio-Vega R, Gonzalez-Cortes T, Olivas-Calderon E, Lantz RC, Gandolfi AJ, Gonzalez-De Alba C (2015) In utero and early childhood exposure to arsenic decreases lung function in children. J Appl Toxicol 35:358–366CrossRefGoogle Scholar
  32. 32.
    González-Horta C, Ballinas-Casarrubias L, Sánchez-Ramírez B, Ishida MC, Barrera-Hernández A, Gutiérrez-Torres D, Zacarias OL, Saunders RJ, Drobná Z, Mendez MA, García-Vargas G, Loomis D, Stýblo M, Del Razo LM (2015) A concurrent exposure to arsenic and fluoride from drinking water in Chihuahua, Mexico. Int J Environ Res Public Health 12:4587–4601CrossRefGoogle Scholar
  33. 33.
    Cárdenas-González M, Osorio-Yáñez C, Gaspar-Ramírez O, Pavković M, Ochoa-Martínez A, López-Ventura D, Medeiros M, Barbier OC, Pérez-Maldonado IN, Sabbisetti VS, Bonventre JV, Vaidya VS (2016) Environmental exposure to arsenic and chromium in children is associated with kidney injury molecule-1. Environ Res 150:653–662CrossRefGoogle Scholar
  34. 34.
    Pérez-Vázquez J, Flores-Ramírez R, Ochoa-Martínez AC, Carrizales-Yáñez L, Ilizaliturri-Hernández CA, Moctezuma-González J, Pruneda-Álvarez LG, Ruiz-Vera T, Orta-García ST, González-Palomo AK, Pérez-Maldonado IN (2016) Human health risks associated with heavy metals in soil in different areas of San Luis Potosí, México. Hum Ecol Risk Assess 22:323–336CrossRefGoogle Scholar
  35. 35.
    Del Razo LM, Garcia-Vargas G, Hernandez MC, Gómez-Muñoz CME (1999) Profile of urinary arsenic metabolites in children chronically exposed to inorganic arsenic in Mexico. In: Chappel WR, Abernathy CO, Calderon RL (eds) Arsenic exposure and health effects. Elsevier, Oxford, pp 281–287CrossRefGoogle Scholar
  36. 36.
    Secretaria de Salubridad y Asistencia. Prevalence of the major diseases in children between 5–14 years. Report Sanitary Jurisdiccion IV Cajeme 2008 (Prevalencia de las principales enfermedades en niños entre 5–14 años. Jurisdicción Sanitaria IV. Cajeme 2008 SSA, Secretaria de Salubridad y Asistencia)Google Scholar
  37. 37.
    Waqas H, Shan A, Khan YG, Nawaz R, Rizwan M, Saif-Ur- Rehman M, Shakoor MB, Ahmed W, Jabeen M (2017) Human health risk assessment of arsenic in groundwater aquifers of Lahore, Pakistan. Hum Ecol Risk Assess 23(4):836–850CrossRefGoogle Scholar
  38. 38.
    Phan K, Sthiannopkao S, Kim K-W, Wong MH, Sao V, Hashim JH, Yasin MSM, Aljunid SM (2010) Health risk assessment of inorganic arsenic intake of Cambodia residents through groundwater drinking pathway. Water Res 44(19):5777–5788CrossRefGoogle Scholar
  39. 39.
    United States Environmental Protection Agency- IRIS. 2014. Toxicological Review of Inorganic Arsenic (Preliminary Assessment Materials). U.S. Environmental Protection Agency, Washington, DC, EPA/630/R-14/101, 2014Google Scholar
  40. 40.
    Razo I, Carrizales L, Castro J, Díaz-Barriga F, Monroy M (2004) Arsenic and heavy metal pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Pollut 152(1–4):129–152CrossRefGoogle Scholar
  41. 41.
    García-Rico L, Meza-Figueroa D, Gandolfi AJ, Del Río-Salas R, Romero FM, Meza-Montenegro MM (2016) Dust–metal sources in an urbanized arid zone: implications for health-risk assessments. Arch Environ Contam Toxicol 70:522–533CrossRefGoogle Scholar
  42. 42.
    Wei B, Yang L (2010) A review of heavy contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94:99–107CrossRefGoogle Scholar
  43. 43.
    Jasso-Pineda Y, Espinosa-Reyes G, González-Mille D, Razo-Soto I, Carrizales L, Torres-Dosal A, Mejía-Saavedra J, Monroy M, Ize AI, Yarto M, Díaz-Barriga F (2007) An integrated health risk assessment approach to the study of mining sites contaminated with arsenic and lead. Integr Environ Assess Manag 3:344–350CrossRefGoogle Scholar
  44. 44.
    Vu CT, Lin C, Yeh G, Villanueva MC (2017) Bioaccumulation and potential sources of heavy metal contamination in fish species in Taiwan: assessment and possible human health implications. Environ Sci Pollut Res 24(23):19422–19434CrossRefGoogle Scholar
  45. 45.
    Agency for Toxic Substances and Disease Registry (ATSDR) (2000) Toxicological profile for arsenic. Public Health Services, Atlanta, United States Department of Health and Human ServicesGoogle Scholar
  46. 46.
    Ochoa-Martinez AC, Orta-Garcia ST, Rico-Escobar EM, Carrizales-Yañez L, Martin Del Campo JD, Pruneda-Alvarez LD, Ruiz-Vera T, Gonzalez-Palomo AK, Piña-Lopez IG, Torres-Dosal A, Pérez-Maldonado IN (2016) Exposure assessment to environmental chemicals in children from Ciudad Juarez, Chihuahua, Mexico. Arch Environ Contam Toxicol 70:657–670CrossRefGoogle Scholar
  47. 47.
    Trejo-Acevedo A, Díaz-Barriga F, Carrizales L, Domínguez G, Costilla R, Ize-Lema I, Yarto-Ramírez M, Gavilán-García A, Mejía-Saavedra JJ, Pérez-Maldonado IN (2009) Exposure assessment of persistent organic pollutants and metals in Mexican children. Chemosphere 74:974–980CrossRefGoogle Scholar
  48. 48.
    Concha G, Vogler G, Nermell B (2002) Intra-individual variation in the metabolism of inorganic arsenic. Int Arch Environ Health 75:576–580CrossRefGoogle Scholar
  49. 49.
    Sun G, Xu X, Li Y, Jin B, Li SX (2007) Urinary arsenic metabolites in children and adults exposed to arsenic in drinking water in Inner Mongolia, China. Environ Health Persp 115:648–652CrossRefGoogle Scholar
  50. 50.
    Chowdhury UK, Rahman MM, Segunpta MK, Lodth D, Chanda CR, Roy S, Quamruzzaman Q, Tokunaga H, Ando M, Chakraborti D (2003) Pattern of excretion of arsenic compounds (arsenite, arsenate, MMA V, DMA V) in urine of children compared to adults from arsenic exposed area in Blangadesh. J Environ Sci Health 38:87–113CrossRefGoogle Scholar
  51. 51.
    Kalman DA, Hughes J, Van Belle G, Burbacher T, Bolgiano D, Coble K, Mottet NK, Polissar L (1990) The effect of variable environmental arsenic contamination of urinary concentrations of arsenic species. Environ Health Persp 89:145–151CrossRefGoogle Scholar
  52. 52.
    Vahter M, Concha G, Nermell B, Nilsson R, Dulout F, Natarajan AT (1995) A unique metabolism of inorganic arsenic in native Andean women. Eur J Pharmacol 293:455–462CrossRefGoogle Scholar
  53. 53.
    Concha G, Nermell B, Vahter MV (1998) Metabolism of inorganic arsenic in children with chronic high arsenic exposure in northern Argentina. Environ Health Perspect 106:355–359CrossRefGoogle Scholar
  54. 54.
    Hopenhayn-Rich C, Biggs ML, Smith AH, Kalman DA, Moore LE (1996) Methylation study of a population environmentally exposed to arsenic in drinking water. Environ Health Perspect 104:620–628CrossRefGoogle Scholar
  55. 55.
    Chiou HY, Hsueh YM, Hsieh LL, Hsu LI, Hsu YH, Hsieh FI, Wei ML, Chen HC, Yang HT, Leu LC, Chu TH, Chen-Wu C, Yang MH, Chen CJ (1997) Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan. Mutat Res 386:197–207CrossRefGoogle Scholar
  56. 56.
    Weinshilboum RM, Otterness DM, Szumlanski CL (1999) Methylation pharmacogenetics: catecol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol 39:19–52CrossRefGoogle Scholar
  57. 57.
    National Research Council (NRC) Subcommittee on Arsenic in Drinking Water. Arsenic in Drinking Water. Washington (DC): National Academies Press (US); 1999. 6, Biomarkers of Arsenic Exposure. Available from: https://www.ncbi.nlm.nih.gov/books/NBK230898/

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Leticia García-Rico
    • 1
    • 2
  • Diana Meza-Figueroa
    • 3
  • A. Jay Gandolfi
    • 4
  • Carlos Ibañez del Rivero
    • 5
  • Marco A. Martínez-Cinco
    • 6
  • Maria M. Meza-Montenegro
    • 7
    Email author
  1. 1.Centro de Investigación en Alimentación y DesarrolloHermosilloMexico
  2. 2.Programa de Doctorado en Ciencias Especialidad en BiotecnologíaInstituto Tecnológico de SonoraObregónMexico
  3. 3.Departamento de Geología, División de Ciencias Exactas y NaturalesUniversidad de SonoraHermosilloMexico
  4. 4.Department of Pharmacology and ToxicologyUniversity of ArizonaTucsonUSA
  5. 5.Programa de Maestría, Departamento de Geología, División de Ciencias Exactas y NaturalesUniversidad de SonoraHermosilloMexico
  6. 6.División de Estudios de Posgrado, Facultad de Ingeniería QuímicaUniversidad Michoacana de San Nicolás de Hidalgo (UMSNH)MoreliaMexico
  7. 7.Departamento de Recursos NaturalesInstituto Tecnológico de SonoraCd. ObregónMexico

Personalised recommendations