Biological Trace Element Research

, Volume 186, Issue 1, pp 185–198 | Cite as

Developmental Neurotoxicity of Arsenic: Involvement of Oxidative Stress and Mitochondrial Functions

  • Lalit P. ChandravanshiEmail author
  • Richa Gupta
  • Rajendra K. Shukla


Over the last decade, there has been an increased concern about the health risks from exposure to arsenic at low doses, because of their neurotoxic effects on the developing brain. The exact mechanism underlying arsenic-induced neurotoxicity during sensitive periods of brain development remains unclear, although enhanced oxidative stresses, leading to mitochondrial dysfunctions might be involved. Here, we highlight the generation of reactive oxygen species (ROS) and oxidative stress which leads to mitochondrial dysfunctions and apoptosis in arsenic-induced developmental neurotoxicity. Here, the administration of sodium arsenite at doses of 2 or 4 mg/kg body weight in female rats from gestational to lactational (GD6-PD21) resulted to increased ROS, led to oxidative stress, and increased the apoptosis in the frontal cortex, hippocampus, and corpus striatum of developing rats on PD22, compared to controls. Enhanced levels of ROS were associated with decreased mitochondrial membrane potential and the activity of mitochondrial complexes, and hampered antioxidant levels. Further, neuronal apoptosis, as measured by changes in the expression of pro-apoptotic (Bax, Caspase-3), anti-apoptotic (Bcl2), and stress marker proteins (p-p38, pJNK) in arsenic-exposed rats, was discussed. The severities of changes were found to more persist in the corpus striatum than in other brain regions of arsenic-exposed rats even after the withdrawal of exposure on PD45 as compared to controls. Therefore, our results indicate that perinatal arsenic exposure leads to abrupt changes in ROS, oxidative stress, and mitochondrial functions and that apoptotic factor in different brain regions of rats might contribute to this arsenic-induced developmental neurotoxicity.


Arsenic Developmental neurotoxicity Oxidative stress Mitochondria Apoptosis 



The authors thank the Director, CSIR—Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, for his support and the keen interest in the present study. Financial support by the University Grants Commission, New Delhi, for carrying out the study is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of Interest

None declared.


  1. 1.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  2. 2.
    Allan AM, Hafez AK, Labrecque MT, Solomon ER, Shaikh MN, Zheng X, Ali A (2015) Sex-dependent effects of developmental arsenic exposure on methylation capacity and methylation regulation of the glucocorticoid receptor system in the embryonic mouse brain. Toxicol Rep 2:1376–1390CrossRefGoogle Scholar
  3. 3.
    Arikan I, Namdar ND, Kahraman C, Dagci M, Ece E (2015) Assessment of arsenic levels in body samples and chronic exposure in people using water with a high concentration of arsenic: a field study in Kutahya. Asian Pac J Cancer Prev 16(8):3183–3188CrossRefGoogle Scholar
  4. 4.
    Bagh MB, Maiti AK, Jana S, Banerjee K, Roy A, Chakrabarti S (2008) Quinone and oxyradical scavenging properties of N-acetylcysteine prevent dopamine mediated inhibition of Na+, K+-ATPase and mitochondrial electron transport chain activity in rat brain: implications in the neuroprotective therapy of Parkinson’s disease. Free Radic Res 42(6):574–581CrossRefGoogle Scholar
  5. 5.
    Burgos S, Tenorio M, Zapata P, Cáceres DD, Klarian J, Alvarez N, Oviedo R, Toro-Campos R, Claudio L, Iglesias V (2017) Cognitive performance among cohorts of children exposed to a waste disposal site containing heavy metals in Chile. Int J Environ Health Res 27(2):117–125CrossRefGoogle Scholar
  6. 6.
    Caito S, Aschner M (2015) Neurotoxicity of metals. Handb Clin Neurol 131:169–189CrossRefGoogle Scholar
  7. 7.
    Calì T, Ottolini D, Brini M (2011) Mitochondria, calcium, and endoplasmic reticulum stress in Parkinson’s disease. Biofactors 37(3):228–240CrossRefGoogle Scholar
  8. 8.
    Chandravanshi LP, Yadav RS, Shukla RK, Singh A, Sultana S, Pant AB, Parmar D, Khanna VK (2014a) Reversibility of changes in brain cholinergic receptors and acetylcholinesterase activity in rats following early life arsenic exposure. Int J Dev Neurosci 34:60–75CrossRefGoogle Scholar
  9. 9.
    Chandravanshi LP, Shukla RK, Sultana S, Pant AB, Khanna VK (2014b) Early life arsenic exposure and brain dopaminergic alterations in rats. Int J Dev Neurosci 38:91–104CrossRefGoogle Scholar
  10. 10.
    Cicero CE, Mostile G, Vasta R, Rapisarda V, Signorelli SS, Ferrante M, Zappia M, Nicoletti A (2017) Metals and neurodegenerative diseases. A systematic review. Environ Res 159:82–94CrossRefGoogle Scholar
  11. 11.
    Clark JB, Bates TE, Boakye P, Kuimov A, Land JM (1997) Investigation of mito-chondrial defects in brain and skeletal muscle. In: Turner AJ, Bachelard HS (eds) Neurochemistry: a practical approach. Oxford University Press, Oxford, pp 151–174Google Scholar
  12. 12.
    Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262(5134):689–695CrossRefGoogle Scholar
  13. 13.
    Dwivedi N, Mehta A, Yadav A, Binukumar BK, Gill KD, Flora SJ (2011) MiADMSA reverses impaired mitochondrial energy metabolism and neuronalapoptotic cell death after arsenic exposure in rats. Toxicol Appl Pharmacol 256(3):241–248CrossRefGoogle Scholar
  14. 14.
    Fan J, Dawson TM, Dawson VL (2017) Cell death mechanisms of neurodegeneration. Adv Neurobiol 15:403–425CrossRefGoogle Scholar
  15. 15.
    Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322(1–2):254–262CrossRefGoogle Scholar
  16. 16.
    Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121CrossRefGoogle Scholar
  17. 17.
    Flora SJ, Bhadauria S, Pant SC, Dhaked RK (2005) Arsenic induced blood and brain oxidative stress and its response to some thiol chelators in rats. Life Sci 77(18):2324–2337CrossRefGoogle Scholar
  18. 18.
    Flora SJ, Mittal M, Mishra D (2009) Co-exposure to arsenic and fluoride on oxidative stress, glutathione linked enzymes, biogenic amines and DNA damage in mouse brain. J Neurol Sci 285(1–2):198–205CrossRefGoogle Scholar
  19. 19.
    Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. I. The disposition of [3H] norepinephrine, [3H] dopamine and [3H] dopa in variousregions of the brain. J Neurochem 13(8):655–659CrossRefGoogle Scholar
  20. 20.
    Gong G, O’Bryant SE (2010) The arsenic exposure hypothesis for Alzheimer disease. Alzheimer Dis Assoc Disord 24:311–316CrossRefGoogle Scholar
  21. 21.
    Hall MN, Niedzwiecki M, Liu X, Harper KN, Alam S, Slavkovich V, Ilievski V, Levy D, Siddique AB, Parvez F, Mey JL, van Geen A, Graziano J, Gamble MV (2013) Chronic arsenic exposure and blood glutathione and glutathione disulfide concentrations in Bangladeshi adults. Environ Health Perspect 121(9):1068–1074CrossRefGoogle Scholar
  22. 22.
    Hasan M, Haider SS (1989) Acetyl homocystein thiolactone protect against some neurotoxic effects of thallium. Neurotoxicology 10(2):257–261PubMedGoogle Scholar
  23. 23.
    Hatefi Y (1978) Preparation and properties of NADH: ubiquinone oxidoreductase (complex I), EC Methods Enzymol 53:11–14CrossRefGoogle Scholar
  24. 24.
    Herrera A, Pineda J, Antonio MT (2013) Toxic effects of perinatal arsenic exposure on the brain of developing rats and the beneficial role of natural antioxidants. Environ Toxicol Pharmacol 36(1):73–79CrossRefGoogle Scholar
  25. 25.
    Hinerfeld D, Traini MD, Weinberger RP, Cochran B, Doctrow SR, Harry J, Melov S (2004) Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J Neurochem 88(3):657–667CrossRefGoogle Scholar
  26. 26.
    Honig LS, Rosenberg RN (2000) Apoptosis and neurologic disease. Am J Med 108(4):317–330CrossRefGoogle Scholar
  27. 27.
    Hsieh HL, Yang CM (2013) Role of redox signaling in neuroinflammation and neurodegenerative diseases. Biomed Res Int 2013:484613PubMedPubMedCentralGoogle Scholar
  28. 28.
    Huo TG, Li WK, Zhang YH, Yuan J, Gao LY, Yuan Y, Yang HL, Jiang H, Sun GF (2015) Excitotoxicity induced by realgar in the rat hippocampus: the involvement of learning memory injury, dysfunction of glutamate metabolism and NMDA receptors. Mol Neurobiol 51(3):980–994CrossRefGoogle Scholar
  29. 29.
    Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valko M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31(2):95–107Google Scholar
  30. 30.
    Kadeyala PK, Sannadi S, Gottipolu RR (2013) Alterations in apoptotic caspases and antioxidant enzymes in arsenic exposed rat brain regions: reversal effect of essential metals and a chelating agent. Environ Toxicol Pharmacol 36(3):1150–1166CrossRefGoogle Scholar
  31. 31.
    Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132Google Scholar
  32. 32.
    Kapoor N, Pant AB, Dhawan A, Dwievedi UN, Gupta YK, Seth PK, Parmar D (2006) Differences in sensitivity of cultured rat brain neuronal and glial cytochrome P450 2E1 to ethanol. Life Sci 79(16):1514–1522CrossRefGoogle Scholar
  33. 33.
    Karri V, Schuhmacher M, Kumar V (2016) Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: a general review of metal mixture mechanism in brain. Environ Toxicol Pharmacol 48:203–213CrossRefGoogle Scholar
  34. 34.
    Laborde A, Tomasina F, Bianchi F, Bruné MN, Buka I, Comba P, Corra L, Cori L, Duffert CM, Harari R, Iavarone I, McDiarmid MA, Gray KA, Sly PD, Soares A, Suk WA, Landrigan PJ (2015) Children’s health in Latin America: the influence of environmental exposures. Environ Health Perspect 123(3):201–209CrossRefGoogle Scholar
  35. 35.
    Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478CrossRefGoogle Scholar
  36. 36.
    Li H, Wang M, Liang Q, Jin S, Sun X, Jiang Y, Pan X, Zhou Y, Peng Y, Zhang B, Zhou A, Zhang Y, Chen Z, Cao J, Zhang H, Xia W, Zheng T, Cai Z, Li Y, Xu S (2017) Urinary metabolomics revealed arsenic exposure related to metabolic alterations in general Chinese pregnant women. J Chromatogr A 1479:145–152CrossRefGoogle Scholar
  37. 37.
    Liu J, Gao Y, Liu H, Sun J, Liu Y, Wu J, Li D, Sun D (2017) Assessment of relationship on excess arsenic intake from drinking water and cognitive impairment in adults and elders in arsenicosis areas. Int J Hyg Environ Health 220(2 Pt B):424–430CrossRefGoogle Scholar
  38. 38.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275Google Scholar
  39. 39.
    Lu TH, Tseng TJ, Su CC, Tang FC, Yen CC, Liu YY, Yang CY, Wu CC, Chen KL, Hung DZ, Chen YW (2014) Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondria-dependent and GRP 78/CHOP-regulated pathways. Toxicol Lett 224(1):130–140CrossRefGoogle Scholar
  40. 40.
    Martínez L, Jiménez V, García-Sepúlveda C, Ceballos F, Delgado JM, Niño-Moreno P, Doniz L, Saavedra-Alanís V, Castillo CG, Santoyo ME, González-Amaro R, Jiménez-Capdeville ME (2011) Impact of early developmental arsenic exposure on promotor CpG-island methylation of genes involved in neuronal plasticity. Neurochem Int 58(5):574–581CrossRefGoogle Scholar
  41. 41.
    Moon KA, Navas-Acien A, Grau-Pérez M, Francesconi KA, Goessler W, Guallar E, Umans JG, Best LG, Newman JD (2017) Low-moderate urine arsenic and biomarkers of thrombosis and inflammation in the Strong Heart Study. PLoS One 12(8):e0182435CrossRefGoogle Scholar
  42. 42.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358CrossRefGoogle Scholar
  43. 43.
    Pamplona R (2008) Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim Biophys Acta 1777(10):1249–1262CrossRefGoogle Scholar
  44. 44.
    Paul R, Choudhury A, Kumar S, Giri A, Sandhir R, Borah A (2017) Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson’s disease: involvement of mitochondrial dysfunctions and oxidative stress. PLoS One 12(2):e0171285CrossRefGoogle Scholar
  45. 45.
    Pradelli LA, Bénéteau M, Ricci JE (2010) Mitochondrial control of caspase-dependent and -independent cell death. Cell Mol Life Sci 67(10):1589–1597CrossRefGoogle Scholar
  46. 46.
    Prakash C, Kumar V (2016) Arsenic-induced mitochondrial oxidative damage is mediated by decreased PGC-1α expression and its downstream targets in rat brain. Chem Biol Interact 256:228–235CrossRefGoogle Scholar
  47. 47.
    Ram Kumar M, Flora SJ, Reddy GR (2013) Monoisoamyl 2,3-dimercaptosuccinic acid attenuates arsenic induced toxicity: behavioral and neurochemical approach. Environ Toxicol Pharmacol 36(1):231–242CrossRefGoogle Scholar
  48. 48.
    Rios R, Zarazúa S, Santoyo ME, Sepúlveda-Saavedra J, Romero-Díaz V, Jiménez V, Pérez-Severiano F, Vidal-Cantú G, Delgado JM, Jiménez-Capdeville ME (2009) Decreased nitric oxide markers and morphological changes in the brain of arsenic-exposed rats. Toxicology 261(1–2):68–75CrossRefGoogle Scholar
  49. 49.
    Robert M, Friedlander MD (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375CrossRefGoogle Scholar
  50. 50.
    Rodríguez-Barranco M, Gil F, Hernández AF, Alguacil J, Lorca A, Mendoza R, Gómez I, Molina-Villalba I, González-Alzaga B, Aguilar-Garduño C, Rohlman DS, Lacasaña M (2016) Postnatal arsenic exposure and attention impairment in school children. Cortex 74:370–382CrossRefGoogle Scholar
  51. 51.
    Rush JW, Quadrilatero J, Levy AS, Ford RJ (2007) Chronic resveratrol enhances endothelium-dependent relaxation but does not alter eNOS levels in aorta of spontaneously hypertensive rats. Exp Biol Med (Maywood) 232(6):814–822Google Scholar
  52. 52.
    Samuel S, Kathirvel R, Jayavelu T, Chinnakkannu P (2005) Protein oxidative dam-age in arsenic induced rat brain: influence of dl-alpha-lipoic acid. Toxicol Lett 155(1):27–34CrossRefGoogle Scholar
  53. 53.
    Sannadi S, Kadeyala PK, Gottipolu RR (2013) Reversal effect of monoisoamyl dimercaptosuccinic acid (MiADMSA) for arsenic and lead induced perturbations in apoptosis and antioxidant enzymes in developing rat brain. Int J Dev Neurosci 31(7):586–597CrossRefGoogle Scholar
  54. 54.
    Sarkar S, Mukherjee S, Chattopadhyay A, Bhattacharya S (2014) Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: expression of antioxidant genes. Ecotoxicol Environ Saf 107:1–8CrossRefGoogle Scholar
  55. 55.
    Shacka JJ, Roth KA (2005) Regulation of neuronal cell death and neurodegeneration by members of the Bcl-2 family: therapeutic implications. Curr Drug Targets CNS Neurol Disord 4(1):25–39CrossRefGoogle Scholar
  56. 56.
    Slomiany BL, Slomiany A (2013) Involvement of p38 MAPK-dependent activator protein (AP-1) activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori by ghrelin. Inflammopharmacology 21(1):67–78CrossRefGoogle Scholar
  57. 57.
    Song B, Zhou T, Liu J, Shao L (2016) Involvement of programmed cell death in neurotoxicity of metallic nanoparticles: recent advances and future perspectives. Nanoscale Res Lett 11(1):484CrossRefGoogle Scholar
  58. 58.
    Srivastava P, Yadav RS, Chandravanshi LP, Shukla RK, Dhuriya YK, Chauhan LK, Dwivedi HN, Pant AB, Khanna VK (2014) Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats. Toxicol Appl Pharmacol 279(3):428–440CrossRefGoogle Scholar
  59. 59.
    Szabo ST, Harry GJ, Hayden KM, Szabo DT, Birnbaum L (2016) Comparison of metal levels between postmortem brain and ventricular fluid in Alzheimer’s disease and nondemented elderly controls. Toxicol Sci 150(2):292–300CrossRefGoogle Scholar
  60. 60.
    Tyler CR, Allan AM (2014) The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep 1:132–147CrossRefGoogle Scholar
  61. 61.
    Wang X, Liu JZ, Hu JX, Wu H, Li YL, Chen HL, Bai H, Hai CX (2011) ROS-activated p38 MAPK/ERK-Akt cascade plays a central role in palmitic acid-stimulated hepatocyte proliferation. Free Radic Biol Med 51(2):539–551CrossRefGoogle Scholar
  62. 62.
    Wharton DC, Tzagoloff A (1967) Cytochrome oxidase from beef heart mitochondria. Methods Enzymol 10:245–250CrossRefGoogle Scholar
  63. 63.
    WHO (2011) Guideline for drinking-water quality, fourth edn. World Health Organization, GenevaGoogle Scholar
  64. 64.
    Yadav RS, Chandravanshi LP, Shukla RK, Sankhwar ML, Ansari RW, Shukla PK, Pant AB, Khanna VK (2011) Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. Neurotoxicology 32(6):760–768CrossRefGoogle Scholar
  65. 65.
    Yu Y, Guo Y, Zhang J, Xie J, Zhu Y, Yan J, Wang B, Li Z (2017) A perspective of chronic low exposure of arsenic on non-working women: risk of hypertension. Sci Total Environ 580:69–73CrossRefGoogle Scholar
  66. 66.
    Zarazúa S, Ríos R, Delgado JM, Santoyo ME, Ortiz-Pérez D, Jiménez-Capdeville ME (2010) Decreased arginine methylation and myelin alterations in arsenic exposed rats. Neurotoxicology 31(1):94–100CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lalit P. Chandravanshi
    • 1
    • 2
    Email author
  • Richa Gupta
    • 2
  • Rajendra K. Shukla
    • 3
  1. 1.Department of Zoology, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Developmental Toxicology DivisionCSIR—Indian Institute of Toxicology ResearchLucknowIndia
  3. 3.Department of BiochemistryAll India Institute of Medical SciencesBhopalIndia

Personalised recommendations