Advertisement

Biological Trace Element Research

, Volume 185, Issue 1, pp 244–251 | Cite as

Antioxidant and Cytoprotective Activity of Oxydiacetate Complexes of Cobalt(II) and Nickel(II) with 1,10-Phenantroline and 2,2′-Bipyridine

  • Agnieszka Piotrowska-Kirschling
  • Joanna Drzeżdżon
  • Anna Kloska
  • Dariusz Wyrzykowski
  • Lech Chmurzyński
  • Dagmara Jacewicz
Article
  • 138 Downloads

Abstract

The antioxidant properties of oxydiacetate complexes of cobalt(II) and nickel(II) with 1,10-phenantroline and 2,2′-bipyridine have been investigated towards the superoxide radical using the nitro blue tetrazolium chloride (NBT) test and the cyclic voltammetry (CV). Moreover, the biological activity of the complexes under study has been investigated in the Human Dermal Fibroblasts adult (HDFa) cell line. In the first step, the cytotoxic and the antiproliferative activities of the complexes were examined. Subsequently, the cytoprotective properties of the complexes have been investigated in an oxidative stress conditions induced by H2O2.

Keywords

Cobalt(II) and nickel(II) complexes Cytoprotective activity Fibroblasts Oxydiacetate ion Oxidative stress 

Notes

Funding information

This work was supported by National Science Centre, Poland, under Grant number 2015/19/N/ST5/00276.

References

  1. 1.
    Rodríguez-Rodríguez A, Garda Z, Ruscsák E, Esteban-Gómez D, De Blas A, Rodríguez-Blas T, Lima LMP, Beyler M, Tripier R, Tircsó G, Platas-Iglesias C (2015) Stable Mn2+, Cu2+ and Ln3+ complexes with cyclen-based ligands functionalized with picolinate pendant arms. Dalton Trans 44(11):5017–5031.  https://doi.org/10.1039/C4DT02985B CrossRefPubMedGoogle Scholar
  2. 2.
    Wyrzykowski D, Inkielewicz-Stępniak I, Pranczk J, Żamojć K, Zięba P, Tesmar A, Jacewicz D, Ossowski T, Chmurzyński L (2015) Physicochemical properties of ternary oxovanadium(IV) complexes with oxydiacetate and 1,10-phenanthroline or 2,2′-bipyridine. Cytoprotective activity in hippocampal neuronal HT22 cells. Biometals 28(2):307–320.  https://doi.org/10.1007/s10534-015-9828-x CrossRefPubMedGoogle Scholar
  3. 3.
    Siddiqi ZA, Sharma PK, Shahid M, Khalid M, Anjuli, Siddiqeue A, Kumar S (2012) Superoxide scavenging and antimicrobial activities of novel transition metal complexes of oxydiacetate dianion as primary ligand: spectral characterization, cyclic voltammetric investigations and crystal structure. Eur J Med Chem 57:102–111.  https://doi.org/10.1016/j.ejmech.2012.08.043 CrossRefPubMedGoogle Scholar
  4. 4.
    Leon IE, Butenko N, Di Virgilio AL, Muglia CI, Baran EJ, Cavaco I, Etcheverry SB (2014) Vanadium and cancer treatment: antitumoral mechanisms of three oxidovanadium(IV) complexes on a human osteosarcoma cell line. J Inorg Biochem 134:106–117.  https://doi.org/10.1016/j.jinorgbio.2013.10.009 CrossRefPubMedGoogle Scholar
  5. 5.
    Siddiqi ZA, Sharma PK, Shahid M, Khalid M, Kumar S (2011) Synthesis, spectral characterizations and biological studies of transition metal mixed ligand complexes: X-ray crystal structures of [Cu(oda)(bipy)(H2O)]∙4H2O and [VO(oda)(bipy)]∙2H2O. J Mol Struct 994(1-3):295–301.  https://doi.org/10.1016/j.molstruc.2011.03.036 CrossRefGoogle Scholar
  6. 6.
    Pranczk J, Wyrzykowski D, Jacewicz D, Sikorski A, Tesmar A, Chmurzyński L (2015) Structural, physico-chemical and antioxidant characteristics of 2,2′-bipyridyl(iminodiacetato) oxidovanadium(IV) dihydrate. Polyhedron 100:74–81.  https://doi.org/10.1016/j.poly.2015.07.019 CrossRefGoogle Scholar
  7. 7.
    Pranczk J, Jacewicz D, Wyrzykowski D, Wojtczak A, Tesmar A, Chmurzyński L (2015) Crystal structure, antioxidant properties and characteristics in aqueous solutions of the oxidovanadium(IV) complex [VO(IDA)phen]·2H2O. Eur J Inorg Chem 2015(20):3343–3349.  https://doi.org/10.1002/ejic.201500272 CrossRefGoogle Scholar
  8. 8.
    Wyrzykowski D, Inkielewicz-Stępniak I, Czupryniak J, Jacewicz D, Ossowski T, Woźniak M, Chmurzyński L (2013) Electrochemical and biological studies on reactivity of [VO(oda)(H2O)2], [Co(oda)(H2O)2]∙H2O, and [Ni(oda)(H2O)3]∙1.5H2O towards superoxide free radicals. Z Anorg Allg Chem 639(10):1795–1799.  https://doi.org/10.1002/zaac.201300152 CrossRefGoogle Scholar
  9. 9.
    Singh O, Tyagi N, Olmstead MM, Ghosh K (2017) The design of synthetic superoxide dismutase mimetics: seven-coordinate water soluble manganese(II) and iron(II) complexes and their superoxide dismutase-like activity studies. Dalton Trans 46(41):14186–14191.  https://doi.org/10.1039/C7DT03278A CrossRefPubMedGoogle Scholar
  10. 10.
    Vujaskovic Z, Batinic-Haberle I, Rabbani ZN, Feng Q, Kang SK, Spasojevic I, Samulski TV, Fridovich I, Dewhirst MW, Anscher MS (2002) A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic Biol Med 33(6):857–863.  https://doi.org/10.1016/S0891-5849(02)00980-2 CrossRefPubMedGoogle Scholar
  11. 11.
    Tabassum S, Amir S, Arjmand F, Pettinari C, Marchetti C, Masciocchi N, Lupidi G, Pettinari R (2013) Mixed-ligand Cu (II)–vanillin Schiff base complexes; effect of coligands on their DNA binding, DNA cleavage, SOD mimetic and anticancer activity. Eur J Med Chem 60:216–232.  https://doi.org/10.1016/j.ejmech.2012.08.019 CrossRefPubMedGoogle Scholar
  12. 12.
    Wyrzykowski D, Kloska A, Pranczk J, Szczepańska A, Tesmar A, Jacewicz D, Pilarski B, Chmurzyński L (2015) Physicochemical and biological properties of oxovanadium(IV), cobalt(II) and nickel(II) complexes with oxydiacetate anions. Biol Trace Elem Res 164(1):139–149.  https://doi.org/10.1007/s12011-014-0170-x CrossRefPubMedGoogle Scholar
  13. 13.
    Grirrane A, Pastor A, Ienco A, Mealli C, Galindo A (2002) Synthesis and molecular structure of oxydiacetate complexes of nickel (II) and cobalt (II). Theoretical analysis of the planar and non-planar conformations of oxydiacetate ligand and oxydiacetic acid. J Chem Soc Dalton Trans 0(19):3771–3777.  https://doi.org/10.1039/B201885C
  14. 14.
    Pranczk J, Jacewicz D, Wyrzykowski D, Chmurzyński L (2014) Analytical methods for determination of reactive oxygen species. Curr Pharm Anal 10(4):293–304.  https://doi.org/10.2174/1573412910666140530221254 CrossRefGoogle Scholar
  15. 15.
    Zhao J, Zhang B, Li J, Liu Y, Wang W (2016) Photo-enhanced oxidizability of tetrazolium salts and its impact on superoxide assaying. Chem Commun 52(77):11595–11598.  https://doi.org/10.1039/C6CC05653A CrossRefGoogle Scholar
  16. 16.
    Ossowski T, Pipka P, Liwo A, Jeziorek D (2000) Electrochemical and UV-spectrophotometric study of oxygen and superoxide anion radical interaction with anthraquinone derivatives and their radical anions. Electrochim Acta 45(21):3581–3587.  https://doi.org/10.1016/S0013-4686(00)00479-5 CrossRefGoogle Scholar
  17. 17.
    Schilt AA (1969) Analytical applications of 1,10-phenantroline and related compounds. Pergamon Press Ltd, IllinoisGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Agnieszka Piotrowska-Kirschling
    • 1
  • Joanna Drzeżdżon
    • 1
  • Anna Kloska
    • 2
  • Dariusz Wyrzykowski
    • 1
  • Lech Chmurzyński
    • 1
  • Dagmara Jacewicz
    • 1
  1. 1.Faculty of ChemistryUniversity of GdańskGdańskPoland
  2. 2.Faculty of BiologyUniversity of GdańskGdańskPoland

Personalised recommendations