Advertisement

Biological Trace Element Research

, Volume 185, Issue 1, pp 148–161 | Cite as

Environment-Friendly Synthesis of Trace Element Zn, Sr, and F Codoping Hydroxyapatite with Non-cytotoxicity and Improved Osteoblast Proliferation and Differentiation

  • Shengjie Xiao
  • Ming Wang
  • Liping Wang
  • Yingchun Zhu
Article

Abstract

Hydroxyapatite (HAp, Ca10[PO4]6[OH]2) doped with numerous trace elements possesses sensational biochemical effects in natural bones. To study the biochemical function of Zn, Sr, and F elements, a series of neoteric HAp biomaterials with Zn, Sr, and F concentrations close to natural bones are firstly synthesized by one-pot hydrothermal method. These materials are characterized through powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). All the synthesized materials are HAp phase. The morphology of these materials is nanorods. The phenomenon that L929 cells can live even at 400 μg/mL powder concentration indicates that these materials are non-cytotoxic. The active effects of samples on proliferation and differentiation of osteoblast cells (MC3T3-E1) are certified by MTT and alkaline phosphatase (ALP) activity assays. The adhesion and proliferation of osteoblast measurement manifest that amounts of MC3T3-E1 advances about 1.86 times for ZnSrF/HAp compared with undoped HAp. This achievement may inspire us on the artificial design of new-style bionic bone grafts using trace bioactive elements and also suggest its latent applications in orthopedic surgery and bone osseointegration.

Keywords

Hydroxyapatite Codoping Trace element Proliferation and differentiation 

Notes

Funding Information

We gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 51232007, 51072217, 51572283) and the Science and Technology Commission of Shanghai Municipality: (No. 08JC1420700 and No. 11XD1405600).

References

  1. 1.
    Zhang R, Metoki N, Sharabani-Yosef O, Zhu H, Eliaz N (2016) Hydroxyapatite/mesoporous graphene/single-walled carbon nanotubes freestanding flexible hybrid membranes for regenerative medicine. Adv Funct Mate 26(44):7965–7974.  https://doi.org/10.1002/adfm.201602088 CrossRefGoogle Scholar
  2. 2.
    Zhang T, Li N, Li KY, Gao RF, Gu W, CC W, RG S, Liu LW, Zhang Q, Liu J (2016) Enhanced proliferation and osteogenic differentiation of human mesenchymal stem cells on biomineralized three-dimensional graphene foams. Carbon 105:233–243.  https://doi.org/10.1016/j.carbon.2016.04.027 CrossRefGoogle Scholar
  3. 3.
    Sadat-Shojai M, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A (2013) Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater 9(8):7591–7621.  https://doi.org/10.1016/j.actbio.2013.04.012 CrossRefPubMedGoogle Scholar
  4. 4.
    Nakamura M, Hiratai R, Hentunen T, Salonen J, Yamashita K (2016) Hydroxyapatite with high carbonate substitutions promotes osteoclast resorption through osteocyte-like cells. Acs Biomater-Sci Eng 2(2):259–267.  https://doi.org/10.1021/acsbiomaterials.5b00509 CrossRefGoogle Scholar
  5. 5.
    Hannig M, Hannig C (2010) Nanomaterials in preventive dentistry. Nat Nanotechnol 5(8):565–569.  https://doi.org/10.1038/nnano.2010.83 CrossRefPubMedGoogle Scholar
  6. 6.
    Lee WH, Loo CY, Rohanizadeh R (2014) A review of chemical surface modification of bioceramics: effects on protein adsorption and cellular response. Colloid Surf B-Biointerfaces 122:823–834.  https://doi.org/10.1016/j.colsurfb.2014.07.029 CrossRefGoogle Scholar
  7. 7.
    Lin K, Xia L, Gan J, Zhang Z, Chen H, Jiang X, Chang J (2013) Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation. ACS Appl Mater Interfaces 5(16):8008–8017.  https://doi.org/10.1021/am402089w CrossRefPubMedGoogle Scholar
  8. 8.
    Lin KL, Wang XH, Zhang N, Shen YH (2016) Strontium (Sr) strengthens the silicon (Si) upon osteoblast proliferation, osteogenic differentiation and angiogenic factor expression. J Mater Chem B 4(21):3632–3638.  https://doi.org/10.1039/c6tb00735j CrossRefGoogle Scholar
  9. 9.
    Boanini E, Gazzano M, Bigi A (2010) Ionic substitutions in calcium phosphates synthesized at low temperature. Acta Biomater 6(6):1882–1894.  https://doi.org/10.1016/j.actbio.2009.12.041 CrossRefPubMedGoogle Scholar
  10. 10.
    Park SY, Kim KI, Park SP, Lee JH, Jung HS (2016) Aspartic acid-assisted synthesis of multifunctional strontium-substituted hydroxyapatite microspheres. Cryst Growth Des 16(8):4318–4326.  https://doi.org/10.1021/acs.cgd.6b00420 CrossRefGoogle Scholar
  11. 11.
    Chen Z, Yi D, Zheng X, Chang J, Wu C, Xiao Y (2014) Nutrient element-based bioceramic coatings on titanium alloy stimulating osteogenesis by inducing beneficial osteoimmmunomodulation. J Mater Chem B 2(36):6030.  https://doi.org/10.1039/c4tb00837e CrossRefGoogle Scholar
  12. 12.
    Shi C, Gao JY, Wang M, Shao YR, Wang LP, Wang DL, Zhu YC (2016) Functional hydroxyapatite bioceramics with excellent osteoconductivity and stern-interface induced antibacterial ability. Biomater Sci 4(4):699–710.  https://doi.org/10.1039/c6bm00009f CrossRefPubMedGoogle Scholar
  13. 13.
    Huang Y, Zhang X, Mao H, Li T, Zhao R, Yan Y, Pang X (2015) Osteoblastic cell responses and antibacterial efficacy of Cu/Zn co-substituted hydroxyapatite coatings on pure titanium using electrodeposition method. RSC Adv 5(22):17076–17086.  https://doi.org/10.1039/c4ra12118j CrossRefGoogle Scholar
  14. 14.
    Cheng K, Weng WJ, Wang HM, Zhang S (2005) In vitro behavior of osteoblast-like cells on fluoridated hydroxyapatite coatings. Biomaterials 26(32):6288–6295.  https://doi.org/10.1016/j.biomaterials.2005.03.041 CrossRefPubMedGoogle Scholar
  15. 15.
    Huo K, Zhang X, Wang H, Zhao L, Liu X, Chu PK (2013) Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials 34(13):3467–3478.  https://doi.org/10.1016/j.biomaterials.2013.01.071 CrossRefPubMedGoogle Scholar
  16. 16.
    Gopi D, Karthika A, Rajeswari D, Kavitha L, Pramod R, Dwivedi J (2014) Investigation on corrosion protection and mechanical performance of minerals substituted hydroxyapatite coating on HELCDEB-treated titanium using pulsed electrodeposition method. RSC Adv 4(66):34751–34759.  https://doi.org/10.1039/c4ra04484c CrossRefGoogle Scholar
  17. 17.
    Pemmer B, Roschger A, Wastl A, Hofstaetter JG, Wobrauschek P, Simon R, Thaler HW, Roschger P, Klaushofer K, Streli C (2013) Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue. Bone 57(1):184–193.  https://doi.org/10.1016/j.bone.2013.07.038 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Grandjean-Laquerrier A, Laquerriere P, Jallot E, Nedelec JM, Guenounou M, Laurent-Maquin D, Phillips TM (2006) Influence of the zinc concentration of sol-gel derived zinc substituted hydroxyapatite on cytokine production by human monocytes in vitro. Biomaterials 27(17):3195–3200.  https://doi.org/10.1016/j.biomaterial.2006.01.024 CrossRefGoogle Scholar
  19. 19.
    Day RM, Boccaccini AR (2005) Effect of particulate bioactive glasses on human macrophages and monocytes in vitro. J Biomed Mater Res A 73A(1):73–79.  https://doi.org/10.1002/jbm.a.30262 CrossRefGoogle Scholar
  20. 20.
    Haase H, Rink L (2007) Signal transduction in monocytes: the role of zinc ions. Biometals 20(3–4):579–585.  https://doi.org/10.1007/s10534-006-9029-8 CrossRefPubMedGoogle Scholar
  21. 21.
    Velard F, Braux J, Amedee J, Laquerriere P (2013) Inflammatory cell response to calcium phosphate biomaterial particles: an overview. Acta Biomater 9(2):4956–4963.  https://doi.org/10.1016/j.actbio.2012.09.035 CrossRefPubMedGoogle Scholar
  22. 22.
    Huang M, Hill RG, Rawlinson SCF (2017) Zinc bioglasses regulate mineralization in human dental pulp stem cells. Dent Mater 33(5):543–552.  https://doi.org/10.1016/j.dental.2017.03.011 CrossRefPubMedGoogle Scholar
  23. 23.
    Querido W, Rossi AL, Farina M (2016) The effects of strontium on bone mineral: a review on current knowledge and microanalytical approaches. Micron 80:122–134.  https://doi.org/10.1016/j.micron.2015.10.006 CrossRefPubMedGoogle Scholar
  24. 24.
    Schumacher M, Gelinsky M (2015) Strontium modified calcium phosphate cements - approaches towards targeted stimulation of bone turnover. J Mater Chem B 3(23):4626–4640.  https://doi.org/10.1039/c5tb00654f CrossRefGoogle Scholar
  25. 25.
    Marie PJ (2005) Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporosis Int 16(S01):S7–S10.  https://doi.org/10.1007/s00198-004-1753.8 CrossRefGoogle Scholar
  26. 26.
    Marie PJ, Ammann P, Boivin G, Rey C (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69(3):121–129.  https://doi.org/10.1007/s002230010055 CrossRefPubMedGoogle Scholar
  27. 27.
    Chattopadhyay N, Quinn SJ, Kifor O, Ye CP, Brown EM (2007) The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast proliferation. Biochem Pharmacol 74(3):438–447.  https://doi.org/10.1016/j.bcp.2007.04.020 CrossRefPubMedGoogle Scholar
  28. 28.
    Skoryna SC (1981) Effects of oral supplementation with stable strontium. Can Med Assoc J 125(7):703–712PubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang YS, Zhang S, Zeng XT, Ma LL, Weng WJ, Yan WQ, Qian M (2007) Osteoblastic cell response on fluoridated hydroxyapatite coatings. Acta Biomater 3(2):191–197.  https://doi.org/10.1016/j.actbio.2006.10.002 CrossRefPubMedGoogle Scholar
  30. 30.
    Cheng K, Weng WJ, Qu HB, Du PY, Shen G, Han GR, Yang J, Ferreira JMF (2004) Sol-gel preparation and in vitro test of fluorapatite/hydroxyapatite films. J Biomed Mater Res B 69B(1):33–37.  https://doi.org/10.1002/jbm.b.20027 CrossRefGoogle Scholar
  31. 31.
    Kim HW, Kim HE, Knowles JC (2004) Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants. Biomaterials 25(17):3351–3358.  https://doi.org/10.1016/j.biomaterials.2003.09.104 CrossRefPubMedGoogle Scholar
  32. 32.
    Wang M, Gao JY, Shi C, Zhu YC, Zeng Y, Wang DL (2014) Facile one-pot synthesis of oriented pure hydroxyapatite with hierarchical architecture by topotactic conversion. Cryst Growth Des 14(12):6459–6466.  https://doi.org/10.1021/cg5013044 CrossRefGoogle Scholar
  33. 33.
    Sakai N, Fujishima A, Watanabe T, Hashimoto K (2003) Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. J Phys Chem B 107(4):1028–1035.  https://doi.org/10.1021/jp022105p CrossRefGoogle Scholar
  34. 34.
    Eslami H, Solati-Hashjin M, Tahriri M (2009) The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite. Mater Sci Eng C 29(4):1387–1398.  https://doi.org/10.1016/j.msec.2008.10.033 CrossRefGoogle Scholar
  35. 35.
    Chenu C, Colucci S, Grano M, Zigrino P, Barattolo R, Zambonin G, Baldini N, Vergnaud P, Delmas PD, Zallone AZ (1994) Osteocalcin induces chemotaxis, secretion of matrix proteins, and calcium-mediated intracellular signaling in human osteoclast-like cells. J Cell Biol 127(4):1149–1158.  https://doi.org/10.1083/jcb.127.4.1149 CrossRefPubMedGoogle Scholar
  36. 36.
    Chen YM, Miao XG (2005) Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents. Biomaterials 26(11):1205–1210.  https://doi.org/10.1016/j.biomaterials.2004.04.027 CrossRefPubMedGoogle Scholar
  37. 37.
    Shi C, Gao JY, Wang M, Fu JK, Wang DL, Zhu YC (2015) Ultra-trace silver-doped hydroxyapatite with non-cytotoxicity and effective antibacterial activity. Mater Sci Eng C-Mater Biol Appl 55:497–505.  https://doi.org/10.1016/j.msec.2015.05.078 CrossRefPubMedGoogle Scholar
  38. 38.
    Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21(7):667–681.  https://doi.org/10.1016/s0142-9612(99)00242-2 CrossRefPubMedGoogle Scholar
  39. 39.
    Wang Z, Telci D, Griffin M (2011) Importance of syndecan-4 and syndecan-2 in osteoblast cell adhesion and survival mediated by a tissue transglutaminase-fibronectin complex. Exp Cell Res 317(3):367–381.  https://doi.org/10.1016/j.yexcr.2010.10.015 CrossRefPubMedGoogle Scholar
  40. 40.
    Tao Z-S, Zhou W-S, He X-W, Liu W, Bai B-L, Zhou Q, Huang Z-L, K-k T, Li H, Sun T, Lv Y-X, Cui W, Yang L (2016) A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats. Mater Sci Eng C-Mater Biol Appl 62:226–232.  https://doi.org/10.1016/j.msec.2016.01.034 CrossRefPubMedGoogle Scholar
  41. 41.
    Huang Y, Hao M, Nian XF, Qiao HX, Zhang XJ, Zhang XY, Song GQ, Guo JC, Pang XF, Zhang HL (2016) Strontium and copper co-substituted hydroxyapatite-based coatings with improved antibacterial activity and cytocompatibility fabricated by electrodeposition. Ceram Int 42(10):11876–11888.  https://doi.org/10.1016/j.ceraminL2016.04.110 CrossRefGoogle Scholar
  42. 42.
    Sogo Y, Ito A, Fukasawa K, Sakurai T, Ichinose N (2004) Zinc containing hydroxyapatite ceramics to promote osteoblastic cell activity. Mater Sci Tech-Lond 20(9):1079–1083.  https://doi.org/10.1179/026708304225019704 CrossRefGoogle Scholar
  43. 43.
    Capuccini C, Torricelli P, Boanini E, Gazzano M, Giardino R, Bigi A (2009) Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells. J Biomed Mater Res A 89A(3):594–600.  https://doi.org/10.1002/jbm.a.31975 CrossRefGoogle Scholar
  44. 44.
    Hall SL, Dimai HP, Farley JR (1999) Effects of zinc on human skeletal alkaline phosphatase activity in vitro. Calcif Tissue Int 64(2):163–172.  https://doi.org/10.1007/s002239900597 CrossRefPubMedGoogle Scholar
  45. 45.
    Huang M, Hill RG, Rawlinson SCF (2016) Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem cells (hDPSCs): a therapeutic role for Sr in dentine repair? Acta Biomater 38:201–211.  https://doi.org/10.1016/j.actbio.2016.04.037 CrossRefPubMedGoogle Scholar
  46. 46.
    Saidak Z, Marie PJ (2012) Strontium signaling: molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol Ther 136(2):216–226.  https://doi.org/10.1016/j.pharmthera.2012.07.009 CrossRefPubMedGoogle Scholar
  47. 47.
    Yang F, Yang DZ, Tu J, Zheng QX, Cai LT, Wang LP (2011) Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 29(6):981–991.  https://doi.org/10.1002/stem.646 CrossRefPubMedGoogle Scholar
  48. 48.
    Bai Y, Bai Y, Gao J, Ma W, Su J, Jia R (2016) Preparation and characterization of reduced graphene oxide/fluorhydroxyapatite composites for medical implants. J Alloy Compd 688:657–667.  https://doi.org/10.1016/j.jallcom.2016.07.006 CrossRefGoogle Scholar
  49. 49.
    Zhou J, Zhao L (2016) Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities. Sci Rep 6(1):29069.  https://doi.org/10.1038/srep29069 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shengjie Xiao
    • 1
    • 2
  • Ming Wang
    • 1
    • 2
  • Liping Wang
    • 1
    • 2
  • Yingchun Zhu
    • 1
    • 2
  1. 1.Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations