Biological Trace Element Research

, Volume 185, Issue 1, pp 20–29 | Cite as

Hair Mineral and Trace Element Contents as Reliable Markers of Nutritional Status Compared to Serum Levels of These Elements in Children Newly Diagnosed with Inflammatory Bowel Disease

  • Jin Min Cho
  • Hye Ran YangEmail author


Patients with inflammatory bowel disease (IBD) are at high risk for nutritional deficiencies because of long-term inflammation in the gut mucosa and decreased oral intake. Because inflammation responses affect serum micronutrient concentrations, serum levels are limited in reflecting body nutrient status in acute and chronic illness. We investigated the usefulness of measuring trace elements in hair as reliable markers of nutritional status compared to serum levels in children with IBD. We retrospectively analyzed pediatric patients newly diagnosed with Crohn’s disease (n = 49) and ulcerative colitis (n = 16) and controls (n = 29) from 2012 to 2016. Serum micronutrient levels, inflammatory markers, and hair trace element content were evaluated and compared at the time of diagnosis and before initiating treatment. Serum calcium (p < 0.001), iron (p < 0.001), zinc (p = 0.013), selenium (p = 0.008), albumin (p < 0.001), prealbumin (p < 0.001), hemoglobin and hematocrit (p < 0.001), and WBC (p = 0.001) and lymphocytes (p < 0.001) differed significantly between the groups. After adjustment for the erythrocyte sedimentation rate, serum zinc and selenium levels were no longer significantly different between the groups (p < 0.062 and p < 0.057, respectively). Following hair analysis for mineral and trace elements, iron (p = 0.033), selenium (p = 0.017), and manganese (p = 0.009) differed significantly between the groups. Serum micronutrient levels need cautious interpretation in conjunction with inflammatory markers. Hair mineral and trace element measurement may support understanding micronutrient status in children with IBD.


Inflammatory bowel disease Hair minerals Trace elements Serum Child 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lees CW, Barrett JC, Parkes M, Satsangi J (2011) New IBD genetics: common pathways with other diseases. Gut 60(12):1739–1753. CrossRefPubMedGoogle Scholar
  2. 2.
    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A, Boucher G, Brand S, Büning C, Cohain A, Cichon S, D'Amato M, de Jong D, Devaney KL, Dubinsky M, Edwards C, Ellinghaus D, Ferguson LR, Franchimont D, Fransen K, Gearry R, Georges M, Gieger C, Glas J, Haritunians T, Hart A, Hawkey C, Hedl M, Hu X, Karlsen TH, Kupcinskas L, Kugathasan S, Latiano A, Laukens D, Lawrance IC, Lees CW, Louis E, Mahy G, Mansfield J, Morgan AR, Mowat C, Newman W, Palmieri O, Ponsioen CY, Potocnik U, Prescott NJ, Regueiro M, Rotter JI, Russell RK, Sanderson JD, Sans M, Satsangi J, Schreiber S, Simms LA, Sventoraityte J, Targan SR, Taylor KD, Tremelling M, Verspaget HW, de Vos M, Wijmenga C, Wilson DC, Winkelmann J, Xavier RJ, Zeissig S, Zhang B, Zhang CK, Zhao H, International IBD Genetics Consortium (IIBDGC), Silverberg MS, Annese V, Hakonarson H, Brant SR, Radford-Smith G, Mathew CG, Rioux JD, Schadt EE, Daly MJ, Franke A, Parkes M, Vermeire S, Barrett JC, Cho JH (2012) Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491(7422):119–124. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Imielinski M, Baldassano RN, Griffiths A, Russell RK, Annese V, Dubinsky M, Kugathasan S, Bradfield JP, Walters TD, Sleiman P, Kim CE, Muise A, Wang K, Glessner JT, Saeed S, Zhang H, Frackelton EC, Hou C, Flory JH, Otieno G, Chiavacci RM, Grundmeier R, Castro M, Latiano A, Dallapiccola B, Stempak J, Abrams DJ, Taylor K, McGovern D, Western Regional Alliance for Pediatric IBD, Silber G, Wrobel I, Quiros A, International IBD Genetics Consortium, Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmuda MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, NIDDK IBD Genetics Consortium, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, van Gossum A, Zelenika D, Franchimont D, Hugot JP, de Vos M, Vermeire S, Louis E, Belgian-French IBD Consortium, Wellcome Trust Case Control Consortium, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T, Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead S, Gwillam R, Tremelling M, Delukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ, Heyman MB, Ferry GD, Kirschner B, Lee J, Essers J, Grand R, Stephens M, Levine A, Piccoli D, van Limbergen J, Cucchiara S, Monos DS, Guthery SL, Denson L, Wilson DC, Grant SF, Daly M, Silverberg MS, Satsangi J, Hakonarson H (2009) Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet 41(12):1335–1340. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hommel KA, Denson LA, Crandall WV, Mackner LM (2008) Behavioral functioning and treatment adherence in pediatric inflammatory bowel disease: review and recommendations for practice. Gastroenterol Hepatol (N Y) 4(11):785Google Scholar
  5. 5.
    Benchimol EI, Fortinsky KJ, Gozdyra P, van den Heuvel M, van Limbergen J, Griffiths AM (2011) Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends. Inflamm Bowel Dis 17(1):423–439. CrossRefPubMedGoogle Scholar
  6. 6.
    O’Sullivan M (2009) Symposium on ‘The challenge of translating nutrition research into public health nutrition’. Session 3: Joint Nutrition Society and Irish Nutrition and Dietetic Institute symposium on ‘Nutrition and autoimmune disease’. Nutrition in Crohn’s disease. Proc Nutr Soc 68(2):127–134. CrossRefPubMedGoogle Scholar
  7. 7.
    Nguyen GC, Munsell M, Harris ML (2008) Nationwide prevalence and prognostic significance of clinically diagnosable protein-calorie malnutrition in hospitalized inflammatory bowel disease patients. Inflamm Bowel Dis 14(8):1105–1111. CrossRefPubMedGoogle Scholar
  8. 8.
    Van Gossum A, Cabre E, Hebuterne X et al (2009) ESPEN guidelines on parenteral nutrition: gastroenterology. Clin Nutr 28(4):415–427. CrossRefPubMedGoogle Scholar
  9. 9.
    Song SM, Kim Y, Oh SH et al (2014) Nutritional status and growth in Korean children with Crohn’s disease: a single-center study. Gut Liver 8(5):500–507. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gerasimidis K, Edwards C, Stefanowicz F, Galloway P, McGrogan P, Duncan A, Talwar D (2013) Micronutrient status in children with IBD: true deficiencies or epiphenomenon of the systemic inflammatory response. J Pediatr Gastroenterol Nutr 56(6):e50–e51. CrossRefPubMedGoogle Scholar
  11. 11.
    Yakut M, Ustun Y, Kabacam G et al (2010) Serum vitamin B12 and folate status in patients with inflammatory bowel diseases. Eur J Intern Med 21(4):320–323. CrossRefPubMedGoogle Scholar
  12. 12.
    Hwang C, Ross V, Mahadevan U (2012) Micronutrient deficiencies in inflammatory bowel disease: from A to zinc. Inflamm Bowel Dis 18(10):1961–1981. CrossRefPubMedGoogle Scholar
  13. 13.
    Duncan A, Talwar D, McMillan DC, Stefanowicz F, O’Reilly DSJ (2012) Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements. Am J Clin Nutr 95(1):64–71. CrossRefPubMedGoogle Scholar
  14. 14.
    Galloway P, McMillan DC, Sattar N (2000) Effect of the inflammatory response on trace element and vitamin status. Ann Clin Biochem 37(Pt 3):289–297. CrossRefPubMedGoogle Scholar
  15. 15.
    Reid D, Toole BJ, Knox S, Talwar D, Harten J, O'Reilly DSJ, Blackwell S, Kinsella J, McMillan DC, Wallace AM (2011) The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. Am J Clin Nutr 93(5):1006–1011. CrossRefPubMedGoogle Scholar
  16. 16.
    Levine A, Koletzko S, Turner D, Escher JC, Cucchiara S, de Ridder L, Kolho KL, Veres G, Russell RK, Paerregaard A, Buderus S, Greer MLC, Dias JA, Veereman-Wauters G, Lionetti P, Sladek M, Carpi JM, Staiano A, Ruemmele FM, Wilson DC (2014) ESPGHAN revised porto criteria for the diagnosis of inflammatory bowel disease in children and adolescents. J Pediatr Gastroenterol Nutr 58(6):795–806. PubMedCrossRefGoogle Scholar
  17. 17.
    Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281. CrossRefPubMedGoogle Scholar
  18. 18.
    Rosen CJ (2011) Clinical practice. Vitamin D insufficiency. N Engl J Med 364(3):248–254. CrossRefPubMedGoogle Scholar
  19. 19.
    Livingstone C (2015) Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract 30(3):371–382. CrossRefPubMedGoogle Scholar
  20. 20.
    Stoffaneller R, Morse NL (2015) A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients 7(3):1494–1537. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Park JS, Chang JY, Hong J, Ko JS, Seo JK, Shin S, Lee EH (2012) Nutritional zinc status in weaning infants: association with iron deficiency, age, and growth profile. Biol Trace Elem Res 150(1–3):91–102. CrossRefPubMedGoogle Scholar
  22. 22.
    Park HS, Shin KO, Kim JS (2007) Assessment of reference values for hair minerals of Korean preschool children. Biol Trace Elem Res 116(2):119–130. CrossRefPubMedGoogle Scholar
  23. 23.
    Weisshof R, Chermesh I (2015) Micronutrient deficiencies in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care 18(6):576–581. CrossRefPubMedGoogle Scholar
  24. 24.
    Fell GS, Talwar D (1998) Assessment of status. Curr Opin Clin Nutr Metab Care 1(6):491–497. CrossRefPubMedGoogle Scholar
  25. 25.
    Thurnham DI (1997) Impact of disease on markers of micronutrient status. Proc Nutr Soc 56(1b):421–431. CrossRefPubMedGoogle Scholar
  26. 26.
    Gabay C, Kushner I (1999) Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 340(6):448–454. CrossRefPubMedGoogle Scholar
  27. 27.
    Manson P, Zlotkin S (1985) Hair analysis—a critical review. Can Med Assoc J 133(3):186–188PubMedPubMedCentralGoogle Scholar
  28. 28.
    Laker M (1982) On determining trace element levels in man: the uses of blood and hair. Lancet 2(8292):260–262CrossRefPubMedGoogle Scholar
  29. 29.
    Aggett PJ, Harries JT (1979) Current status of zinc in health and disease states. Arch Dis Child 54(12):909–917. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mertz W (1981) The essential trace elements. Science 213(4514):1332–1338. CrossRefPubMedGoogle Scholar
  31. 31.
    Halsted JA, Smith JC Jr (1970) Plasma-zinc in health and disease. Lancet 1(7642):322–324CrossRefPubMedGoogle Scholar
  32. 32.
    Halsted JA, Ronaghy HA, Abadi P, Haghshenass M, Amirhakemi GH, Barakat RM, Reinhold JG (1972) Zinc deficiency in man. The Shiraz experiment. Am J Med 53(3):277–284. CrossRefPubMedGoogle Scholar
  33. 33.
    Alkhouri RH, Hashmi H, Baker RD, Gelfond D, Baker SS (2013) Vitamin and mineral status in patients with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 56(1):89–92. CrossRefPubMedGoogle Scholar
  34. 34.
    Willoughby JL, Bowen CN (2014) Zinc deficiency and toxicity in pediatric practice. Curr Opin Pediatr 26(5):579–584. CrossRefPubMedGoogle Scholar
  35. 35.
    Geerling BJ, Badart-Smook A, Stockbrugger RW et al (2000) Comprehensive nutritional status in recently diagnosed patients with inflammatory bowel disease compared with population controls. Eur J Clin Nutr 54(6):514–521. CrossRefPubMedGoogle Scholar
  36. 36.
    Geerling BJ, Badart-Smook A, Stockbrugger RW et al (1998) Comprehensive nutritional status in patients with long-standing Crohn disease currently in remission. Am J Clin Nutr 67(5):919–926CrossRefPubMedGoogle Scholar
  37. 37.
    Ringstad J, Kildebo S, Thomassen Y (1993) Serum selenium, copper, and zinc concentrations in Crohn’s disease and ulcerative colitis. Scand J Gastroenterol 28(7):605–608. CrossRefPubMedGoogle Scholar
  38. 38.
    Erzin Y, Uzun H, Celik AF, Aydin S, Dirican A, Uzunismail H (2008) Hyperhomocysteinemia in inflammatory bowel disease patients without past intestinal resections: correlations with cobalamin, pyridoxine, folate concentrations, acute phase reactants, disease activity, and prior thromboembolic complications. J Clin Gastroenterol 42(5):481–486. CrossRefPubMedGoogle Scholar
  39. 39.
    Chowers Y, Sela BA, Holland R, Fidder H, Simoni FB, Bar-Meir S (2000) Increased levels of homocysteine in patients with Crohn’s disease are related to folate levels. Am J Gastroenterol 95(12):3498–3502. CrossRefPubMedGoogle Scholar
  40. 40.
    Hoffbrand AV, Stewart JS, Booth CC, Mollin DL (1968) Folate deficiency in Crohn’s disease: incidence, pathogenesis, and treatment. Br Med J 2(5597):71–75. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Halsted CH, Gandhi G, Tamura T (1981) Sulfasalazine inhibits the absorption of folates in ulcerative colitis. N Engl J Med 305(25):1513–1517. CrossRefPubMedGoogle Scholar
  42. 42.
    Louw JA, Werbeck A, Louw ME et al (1992) Blood vitamin concentrations during the acute-phase response. Crit Care Med 20(7):934–941. CrossRefPubMedGoogle Scholar
  43. 43.
    Senofonte, Violante N, Caroli S (2000) Assessment of reference values for elements in human hair of urban schoolboys. J Trace Elem Med Biol 14(1):6–13. CrossRefPubMedGoogle Scholar
  44. 44.
    Dongarra G, Lombardo M, Tamburo E et al (2011) Concentration and reference interval of trace elements in human hair from students living in Palermo, Sicily (Italy). Environ Toxicol Pharmacol 32(1):27–34. CrossRefPubMedGoogle Scholar
  45. 45.
    Vanaelst B, Huybrechts I, Michels N, Vyncke K, Sioen I, de Vriendt T, Flórez MR, Aramendía M, Balcaen L, Resano M, Vanhaecke F, de Henauw S (2012) Mineral concentrations in hair of Belgian elementary school girls: reference values and relationship with food consumption frequencies. Biol Trace Elem Res 150(1–3):56–67. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of PediatricsSeoul National University Bundang HospitalSeongnam-siSouth Korea
  2. 2.Seoul National University College of MedicineSeoulSouth Korea

Personalised recommendations