Biotechnological Applications of Paenibacillus sp. D9 Lipopeptide Biosurfactant Produced in Low-cost Substrates

  • 16 Accesses


The present study assesses the Paenibacillus sp. D9 lipopeptide biosurfactant synthesis in cheap substrates including functional properties and applicability for varying biotechnological processes. Different experimental setups were made for oil dispersion, heavy metals removals from contaminated environments, and washing performance. The study revealed surface tension activities of 31.7–32.7 mN/m, and maximum biosurfactant yield of more than 8 g/L. Removals of 85.90%, 98.68%, 99.97%, 63.28%, 99.93%, and 94.22% were obtained for Ca, Cu, Fe, Mg, Ni, and Zn, respectively from acid mine effluents. In comparison with chemical surfactants, there was pronounced removal of heavy metals from wastewater, contaminated sands, and vegetable matter, as well as improved oil dispersing activity. A comparative study revealed that biosurfactant was more efficient (> 60%) for removal of tomato sauce and coffee stains than chemical surfactants (< 50%). Thus, lipopeptide biosurfactants are green biomolecules reducing hazards and contaminations within the environment. The future use of this lipopeptide biosurfactant is greatly promising in biotechnology.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    De Almeida, D. G., Da Soares Silva, R. C. F., Luna, J. M., Rufino, R. D., Santos, V. A., Banat, I. M., & Sarubbo, L. A. (2016). Biosurfactants: promising molecules for petroleum biotechnology advances. Frontiers in Microbiology, 7, 1718.

  2. 2.

    Sarubbo, L. A., Lunaa, J. M., & Rufinoa, R. D. (2015). Application of a biosurfactant produced in low-cost substrates in the removal of hydrophobic contaminants. Chemical Engineering, 43, 295–300.

  3. 3.

    Jimoh, A. A., & Lin, J. (2019). Biosurfactant: a new frontier for greener technology and environmental sustainability. Ecotoxicology and Environmental Safety, 184, 109607.

  4. 4.

    Jimoh, A. A., & Lin, J. (2019). Heterologous expression of Sfp-type phosphopantetheinyl transferase is indispensable in the biosynthesis of lipopeptide biosurfactant. Molecular Biotechnology, 161(11), 836–851.

  5. 5.

    Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2016). Biosurfactants: multifunctional biomolecules of the 21st century. International Journal of Molecular Sciences, 17(3), 401.

  6. 6.

    Anyanwu, C., Obi, S., & Okolo, B. (2011). Lipopeptide biosurfactant production by Serratia marcescens NSK-1 strain isolated from petroleum-contaminated soil. Journal of Applied Sciences Research, 7, 79–87.

  7. 7.

    Syahriansyah, U. K. M., & Hamzah, A. (2016). Determination of optimum conditions and stability study of biosurfactant produced by Bacillus subtilis UKMP-4M5. Malaysian Journal of Analytical Sciences, 20, 986–1000.

  8. 8.

    Zhao, F., Shi, R., Cui, Q., Han, S., Dong, H., & Zhang, Y. (2017). Biosurfactant production under diverse conditions by two kinds of biosurfactant-producing bacteria for microbial enhanced oil recovery. Journal of Petroleum Science and Engineering, 157, 124–130.

  9. 9.

    Bezza, F. A., & Chirwa, E. M. (2015). Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media. Process Safety and Environmental Protection, 98, 354–364.

  10. 10.

    Usman, M. M., Dadrasnia, A., Lim, K. T., Mahmud, A. F., & Ismail, S. (2016). Application of biosurfactants in environmental biotechnology; remediation of oil and heavy metal. AIMS Bioengineering, 3, 289–304.

  11. 11.

    Anjum, F., Gautam, G., Edgard, G., & Negi, S. (2016). Biosurfactant production through Bacillus sp. MTCC 5877 and its multifarious applications in food industry. Bioresource Technology, 213, 262–269.

  12. 12.

    Singh, J., & Kalamdhad, A. S. (2011). Effects of heavy metals on soil, plants, human health and aquatic life. International Journal of Research in Chemistry and Environment, 1, 15–21.

  13. 13.

    Bouassida, M., Fourati, N., Ghazala, I., Ellouze-Chaabouni, S., & Ghribi, D. (2018). Potential application of Bacillus subtilis SPB1 biosurfactants in laundry detergent formulations: compatibility study with detergent ingredients and washing performance. Engineering in Life Sciences, 18, 70–77.

  14. 14.

    Patowary, K., Patowary, R., Kalita, M. C., & Deka, S. (2017). Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Frontiers in Microbiology, 8, 279.

  15. 15.

    Yañez-Ocampo, G., Somoza-Coutiño, G., Blanco-González, C., & Wong-Villarreal, A. (2017). Utilization of agroindustrial waste for biosurfactant production by native bacteria from Chiapas. Open Agriculture, 2, 341–349.

  16. 16.

    Jimoh, A. A., & Lin, J. (2019). Enhancement of Paenibacillus sp. D9 lipopeptide biosurfactant production through the optimization of medium composition and its application for biodegradation of hydrophobic pollutants. Applied Biochemistry and Biotechnology, 187(3), 724–743.

  17. 17.

    Jimoh, A. A., & Lin, J. (2019). Production and characterization of lipopeptide biosurfactant producing Paenibacillus sp. D9 and its biodegradation of diesel fuel. International journal of Environmental Science and Technology, 16, 4143–4158.

  18. 18.

    Deng, M. C., Li, J., Hong, Y. H., Xu, X. M., Chen, W. X., Yuan, J. P., Peng, J., Yi, M., & Wang, J. H. (2016). Characterization of a novel biosurfactant produced by marine hydrocarbon-degrading bacterium Achromobacter sp. HZ01. Journal of Applied Microbiology, 120, 889–899.

  19. 19.

    Sharma, D., Saharan, B. S., Chauhan, N., Procha, S., & Lal, S. (2015). Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. SpringerPlus, 4, 4.

  20. 20.

    Dahrazma, B., & Mulligan, C. N. (2007). Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere, 69(5), 705–711.

  21. 21.

    Santos, D. K. F., Resende, A. H. M., de Almeida, D. G., Soares da Silva, R. C. F., Rufino, R. D., Luna, J. M., Banat, I. M., & Sarubbo, L. A. (2017). Candida lipolytica UCP0988 biosurfactant: Potential as a bioremediation agent and in formulating a commercial related product. Frontiers in Microbiology, 8, 767.

  22. 22.

    Andrade Silva, N. R., Luna, M. A., Santiago, A. L., Franco, L. O., Silva, G. K., de Souza, P. M., Okada, K., Albuquerque, C. D., Silva, C. A., & Campos-Takaki, G. M. (2014). Biosurfactant-and-bioemulsifier produced by a promising Cunninghamella echinulata isolated from caatinga soil in the northeast of Brazil. International Journal of Molecular Sciences, 15(9), 15377–15395.

  23. 23.

    Santos, E., Teixeira, M., Converti, A., Porto, A., & Sarubbo, L. (2018). Production of a new lipoprotein biosurfactant by Streptomyces sp. DPUA1566 isolated from lichens collected in the Brazilian Amazon using agroindustry wastes. Biocatalysis and Agricultural Biotechnology, 17, 142–150.

  24. 24.

    Lan, G., Fan, Q., Liu, Y., Chen, C., Li, G., Liu, Y., & Yin, X. (2015). Rhamnolipid production from waste cooking oil using Pseudomonas SWP-4. Biochemical Engineering Journal, 101, 44–54.

  25. 25.

    Partovi, M., Lotfabad, T. B., Roostaazad, R., Bahmaei, M., & Tayyebi, S. (2013). Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01. World Journal of Microbiology and Biotechnology, 29(6), 1039–1047.

  26. 26.

    Velioglu, Z., & Urek, R. O. (2016). Physicochemical and structural characterization of biosurfactant produced by Pleurotus djamor in solid-state fermentation. Biotechnology and Bioprocess Engineering, 21, 430–438.

  27. 27.

    Kim, J., & Vipulanandan, C. (2006). Removal of lead from contaminated water and clay soil using a biosurfactant. Journal of Environmental Engineering, 132, 777–786.

  28. 28.

    Sarubbo, L., Rocha Jr., R., Luna, J., Rufino, R., Santos, V., & Banat, I. (2015). Some aspects of heavy metals contamination remediation and role of biosurfactants. Chemistry and Ecology, 31, 707–723.

  29. 29.

    Juwarkar, A. A., Dubey, K. V., Nair, A., & Singh, S. K. (2008). Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Indian Journal of Microbiology, 48(1), 142–146.

  30. 30.

    Elouzi, A. A., Akasha, A. A., Elgerbi, A. M., El-Baseir, M., & El Gammudi, B. A. (2012). Removal of heavy metals contamination by bio-surfactants (rhamnolipids). Journal of Chemical and Pharmaceutical Research, 4, 4337–4341.

  31. 31.

    Hidayati, N., Surtiningsih, T., & Ni’matuzahroh. (2014). Removal of heavy metals Pb, Zn and Cu from sludge waste of paper industries using biosurfactant. Journal of Bioremediation & Biodegradation, 5, 255.

  32. 32.

    Akpor, O. (2011). Wastewater effluent discharge: effects and treatment processes. International Proceedings of Chemical, Biology, and Environmental Engineering, 20, 85–91.

  33. 33.

    Wen, J., Stacey, S. P., McLaughlin, M. J., & Kirby, J. K. (2009). Biodegradation of rhamnolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biology and Biochemistry, 41, 2214–2221.

  34. 34.

    Meenakshisundaram, M., & Pramila, M. (2017). Detoxification of heavy metals using microbial biosurfactant. International Journal of Current Microbiology and Applied Sciences, 6, 402–411.

  35. 35.

    Giri, S. S., Sen, S. S., Jun, J. W., Sukumaran, V., & Park, S. C. (2017). Role of Bacillus licheniformis VS16-derived biosurfactant in mediating immune responses in Carp Rohu and its application to the food industry. Frontiers in Microbiology, 8, 514.

  36. 36.

    Ochoa-Loza, F. J., Noordman, W. H., Jannsen, D. B., Brusseau, M. L., & Maier, R. M. (2007). Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil. Chemosphere, 66(9), 1634–1642.

  37. 37.

    Luna, J. M., Santos Filho, A. S., Rufino, R. D., & Sarubbo, L. A. (2016). Production of biosurfactant from Candida bombicola URM 3718 for environmental applications. Chemical Engineering, 49, 583–588.

  38. 38.

    Ibrahim, M. L., Ijah, U. J. J., Manga, S. B., Bilbis, L. S., & Umar, S. (2013). Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. International Biodeterioration and Biodegradation, 81, 28–34.

  39. 39.

    Chandran, P., & Das, N. (2010). Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. International Journal of Engineering, Science and Technology, 2, 6942–6953.

  40. 40.

    Freitas, B. G., Brito, J. M., Brasileiro, P. P., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2016). Formulation of a commercial biosurfactant for application as a dispersant of petroleum and by-products spilled in oceans. Frontiers in Microbiology, 7, 1646.

  41. 41.

    Turbekar, R., Malik, N., Dey, D., & Thakare, D. (2014). Development of rhamnolipid based white board cleaner. International Journal of Applied Sciences and Biotechnology, 2, 570–573.

  42. 42.

    Joshi-Navare, K., Khanvilkar, P., & Prabhune, A. (2013). Jatropha oil derived sophorolipids: production and characterization as laundry detergent additive. Biochemistry Research International, 2013, 11.

  43. 43.

    Khaje Bafghi, M., & Fazaelipoor, M. H. (2012). Application of rhamnolipid in the formulation of a detergent. Journal of Surfactants and Detergents, 15, 679–684.

  44. 44.

    Sajna, K. V., Sukumaran, R. K., Jayamurthy, H., Reddy, K. K., Kanjilal, S., Prasad, R. B., & Pandey, A. (2013). Studies on biosurfactants from Pseudozyma sp. NII 08165 and their potential application as laundry detergent additives. Biochemical Engineering Journal, 78, 85–92.

  45. 45.

    Savarino, P., Montoneri, E., Musso, G., & Boffa, V. (2010). Biosurfactants from urban wastes for detergent formulation: surface activity and washing performance. Journal of Surfactants and Detergents, 13, 59–68.

  46. 46.

    da Rocha Junior, R. B., Meira, H. M., Almeida, D. G., Rufino, R. D., Luna, J. M., Santos, V. A., & Sarubbo, L. A. (2018). Application of a low-cost biosurfactant in heavy metal remediation processes. Biodegradation, 30(4), 215–233.

  47. 47.

    de França, Í. W. L., Lima, A. P., Lemos, J. A. M., Lemos, C. G. F., Melo, V. M. M., de Sant’ana, H. B., & Gonçalves, L. R. B. (2015). Production of a biosurfactant by Bacillus subtilis ICA56 aiming bioremediation of impacted soils. Catalysis Today, 255, 10–15.

Download references

Author information

Correspondence to Abdullahi Adekilekun Jimoh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material


(DOCX 3734 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jimoh, A.A., Lin, J. Biotechnological Applications of Paenibacillus sp. D9 Lipopeptide Biosurfactant Produced in Low-cost Substrates. Appl Biochem Biotechnol (2020) doi:10.1007/s12010-020-03246-5

Download citation


  • Biosurfactant
  • Chemical surfactants
  • Detergents
  • Heavy metals
  • Low cost
  • Paenibacillus sp. D9