A KLVFFAE-Derived Peptide Probe for Detection of Alpha-Synuclein Fibrils

  • Amy Wood
  • Edward Chau
  • Yanxi Yang
  • Jin Ryoun KimEmail author


Aggregation of an amyloid protein, α-synuclein (αS), is a critical step in the neurodegenerative pathway of Parkinson’s diseases (PD). Specific detection of amyloid conformers (i.e., monomers, oligomers, and fibrils) produced during αS aggregation is critical in better understanding a molecular basis of PD and developing a diagnostic tool. While various molecular probes are available for detection of αS fibrils, which may serve as a reservoir of toxic αS aggregate forms, these probes suffer from limited conformer-specificity and operational flexibility. In the present study, we explored the potential of non-self-aggregating peptides derived from the highly aggregation-prone KLVFFAE region of an amyloid protein, β-amyloid, as molecular probes for αS aggregates. We show that of the four peptides tested (KLVFWAK, ELVFWAE, and their C-terminal capping variants, all of which were attached with fluorescein isothiocyanate at their respective N-termini), KLVFWAK with C-terminal capping was selectively bound to αS fibrils over monomers and oligomers and readily used for monitoring αS fibrilization. Our analyses suggest that binding of the peptide to αS fibrils is mediated by both electrostatic and hydrophobic interactions. We anticipate that our peptide can readily be optimized for conformer-specificity and operational flexibility. Overall, this study presents the creation of a KLVFFAE-based molecular probe for αS fibrils and demonstrates fine-tuning of its conformer-specificity by terminal mutations and capping.


α-synuclein Amyloid aggregation Fibril Peptide probe Protein engineering 



The research reported in this article was supported by the NIH/NIA Grant R21AG049137. We thank the Small Instrument Fleet of New York University (NYULMC) for the use of the Typhoon Trio Phosphoimaging System.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Reiss, A. B., Arain, H. A., Stecker, M. M., Siegart, N. M., & Kasselman, L. J. (2018). Amyloid toxicity in Alzheimer's disease. Reviews in the Neurosciences, 29(6), 613–627.PubMedCrossRefGoogle Scholar
  2. 2.
    Lashuel, H. A., Overk, C. R., Oueslati, A., & Masliah, E. (2013). The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nature Reviews. Neuroscience, 14(1), 38–48.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Buell, A. K., Galvagnion, C., Gaspar, R., Sparr, E., Vendruscolo, M., Knowles, T. P., Linse, S., & Dobson, C. M. (2014). Solution conditions determine the relative importance of nucleation and growth processes in alpha-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 111(21), 7671–7676.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Tipping, K. W., van Oosten-Hawle, P., Hewitt, E. W., & Radford, S. E. (2015). Amyloid fibres: inert end-stage aggregates or key players in disease? Trends in Biochemical Sciences, 40(12), 719–727.PubMedCrossRefGoogle Scholar
  5. 5.
    Tipping, K. W., Karamanos, T. K., Jakhria, T., Iadanza, M. G., Goodchild, S. C., Tuma, R., Ranson, N. A., Hewitt, E. W., & Radford, S. E. (2015). pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. Proceedings of the National Academy of Sciences of the United States of America, 112(18), 5691–5696.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Koffie, R. M., Meyer-Luehmann, M., Hashimoto, T., Adams, K. W., Mielke, M. L., Garcia-Alloza, M., Micheva, K. D., Smith, S. J., Kim, M. L., Lee, V. M., Hyman, B. T., & Spires-Jones, T. L. (2009). Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proceedings of the National Academy of Sciences of the United States of America, 106(10), 4012–4017.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Cremades, N., Cohen, S. I., Deas, E., Abramov, A. Y., Chen, A. Y., Orte, A., Sandal, M., Clarke, R. W., Dunne, P., Aprile, F. A., Bertoncini, C. W., Wood, N. W., Knowles, T. P., Dobson, C. M., & Klenerman, D. (2012). Direct observation of the interconversion of normal and toxic forms of alpha-synuclein. Cell, 149(5), 1048–1059.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Cho, J. E., & Kim, J. R. (2011). Recent approaches targeting beta-amyloid for therapeutic intervention of Alzheimer's disease. Recent Patents on CNS Drug Discovery, 6(3), 222–233.PubMedCrossRefGoogle Scholar
  9. 9.
    Madav, Y., Wairkar, S., & Prabhakar, B. (2019). Recent therapeutic strategies targeting beta amyloid and tauopathies in Alzheimer's disease. Brain Research Bulletin, 146, 171–184.PubMedCrossRefGoogle Scholar
  10. 10.
    Irvine, G. B., El-Agnaf, O. M., Shankar, G. M., & Walsh, D. M. (2008). Protein aggregation in the brain: the molecular basis for Alzheimer's and Parkinson's diseases. Molecular Medicine, 14(7-8), 451–464.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hu, Y., Su, B., Zheng, H., & Kim, J. R. (2012). A peptide probe for detection of various beta-amyloid oligomers. Molecular BioSystems, 8(10), 2741–2752.PubMedCrossRefGoogle Scholar
  12. 12.
    Reinke, A. A., & Gestwicki, J. E. (2011). Insight into amyloid structure using chemical probes. Chemical Biology & Drug Design, 77(6), 399–411.CrossRefGoogle Scholar
  13. 13.
    Biancalana, M., & Koide, S. (2010). Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta, 1804(7), 1405–1412.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wu, C., Wang, Z., Lei, H., Duan, Y., Bowers, M. T., & Shea, J. E. (2008). The binding of thioflavin T and its neutral analog BTA-1 to protofibrils of the Alzheimer's disease Abeta(16-22) peptide probed by molecular dynamics simulations. Journal of Molecular Biology, 384(3), 718–729.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Ryan, D. A., Narrow, W. C., Federoff, H. J., & Bowers, W. J. (2010). An improved method for generating consistent soluble amyloid-beta oligomer preparations for in vitro neurotoxicity studies. Journal of Neuroscience Methods, 190(2), 171–179.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Maezawa, I., Hong, H. S., Liu, R., Wu, C. Y., Cheng, R. H., Kung, M. P., Kung, H. F., Lam, K. S., Oddo, S., Laferla, F. M., & Jin, L. W. (2008). Congo red and thioflavin-T analogs detect Abeta oligomers. Journal of Neurochemistry, 104(2), 457–468.PubMedGoogle Scholar
  17. 17.
    Naiki, H., Higuchi, K., Hosokawa, M., & Takeda, T. (1989). Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. Analytical Biochemistry, 177(2), 244–249.PubMedCrossRefGoogle Scholar
  18. 18.
    Crystal, A. S., Giasson, B. I., Crowe, A., Kung, M. P., Zhuang, Z. P., Trojanowski, J. Q., & Lee, V. M. (2003). A comparison of amyloid fibrillogenesis using the novel fluorescent compound K114. Journal of Neurochemistry, 86(6), 1359–1368.PubMedCrossRefGoogle Scholar
  19. 19.
    Lindgren, M., Sorgjerd, K., & Hammarstrom, P. (2005). Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy. Biophysical Journal, 88(6), 4200–4212.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Schmidt, M. L., Schuck, T., Sheridan, S., Kung, M. P., Kung, H., Zhuang, Z. P., Bergeron, C., Lamarche, J. S., Skovronsky, D., Giasson, B. I., Lee, V. M., & Trojanowski, J. Q. (2001). The fluorescent Congo red derivative, (trans, trans)-1-bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (BSB), labels diverse beta-pleated sheet structures in postmortem human neurodegenerative disease brains. The American Journal of Pathology, 159(3), 937–943.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Volkova, K. D., Kovalska, V. B., Balanda, A. O., Vermeij, R. J., Subramaniam, V., Slominskii, Y. L., & Yarmoluk, S. M. (2007). Cyanine dye-protein interactions: looking for fluorescent probes for amyloid structures. Journal of Biochemical and Biophysical Methods, 70(5), 727–733.PubMedCrossRefGoogle Scholar
  22. 22.
    Reinke, A. A., Abulwerdi, G. A., & Gestwicki, J. E. (2010). Quantifying prefibrillar amyloids in vitro by using a "thioflavin-like" spectroscopic method. Chembiochem, 11(13), 1889–1895.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lee, D., Kim, S. M., Kim, H. Y., & Kim, Y. (2019). Fluorescence chemicals to detect insoluble and soluble amyloid-beta aggregates. ACS Chemical Neuroscience, 10(6), 2647–2657.PubMedCrossRefGoogle Scholar
  24. 24.
    Klunk, W. E., Jacob, R. F., & Mason, R. P. (1999). Quantifying amyloid beta-peptide (A beta) aggregation using the Congo red A beta (CR-A beta) spectrophotometric assay. Analytical Biochemistry, 266(1), 66–76.PubMedCrossRefGoogle Scholar
  25. 25.
    Rouet, R., Lowe, D., & Christ, D. (2014). Stability engineering of the human antibody repertoire. FEBS Letters, 588(2), 269–277.PubMedCrossRefGoogle Scholar
  26. 26.
    Aoraha, E., Candreva, J., & Kim, J. R. (2015). Engineering of a peptide probe for beta-amyloid aggregates. Molecular BioSystems, 11(8), 2281–2289.PubMedCrossRefGoogle Scholar
  27. 27.
    Candreva, J., Chau, E., Aoraha, E., Nanda, V., & Kim, J. R. (2018). Hetero-assembly of a dual beta-amyloid variant peptide system. Chemical Communications (Cambridge), 54(49), 6380–6383.CrossRefGoogle Scholar
  28. 28.
    Charlton, T., Shah, V., Lynch, T., Candreva, J., Chau, E., Yang, Y., Kim, H., Wood, A., & Kim, J. R. (2018). Amyloid aggregation of Bacillus circulans xylanase under native conditions and its modulation by beta-amyloid-derived peptide fragments. Chembiochem, 19(24), 2566–2574.PubMedCrossRefGoogle Scholar
  29. 29.
    Tao, K., Wang, J., Zhou, P., Wang, C., Xu, H., Zhao, X., & Lu, J. R. (2011). Self-assembly of short abeta(16-22) peptides: effect of terminal capping and the role of electrostatic interaction. Langmuir, 27(6), 2723–2730.PubMedCrossRefGoogle Scholar
  30. 30.
    Conway, K. A., Harper, J. D., & Lansbury, P. T. (1998). Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nature Medicine, 4(11), 1318–1320.PubMedCrossRefGoogle Scholar
  31. 31.
    Greenbaum, E. A., Graves, C. L., Mishizen-Eberz, A. J., Lupoli, M. A., Lynch, D. R., Englander, S. W., Axelsen, P. H., & Giasson, B. I. (2005). The E46K mutation in alpha-synuclein increases amyloid fibril formation. The Journal of Biological Chemistry, 280(9), 7800–7807.PubMedCrossRefGoogle Scholar
  32. 32.
    Tashiro, M., Kojima, M., Kihara, H., Kasai, K., Kamiyoshihara, T., Ueda, K., & Shimotakahara, S. (2008). Characterization of fibrillation process of alpha-synuclein at the initial stage. Biochemical and Biophysical Research Communications, 369(3), 910–914.PubMedCrossRefGoogle Scholar
  33. 33.
    Hernandez, M., Hu, Y., & Kim, J. R. (2013). A conformation-switching fluorescent protein probe for detection of alpha synuclein oligomers. Chemical Communications (Cambridge), 49(91), 10712–10714.CrossRefGoogle Scholar
  34. 34.
    Hernandez, M., Golbert, S., Zhang, L. G., & Kim, J. R. (2011). Creation of aggregation-defective alpha-synuclein variants by engineering the sequence connecting beta-strand-forming domains. Chembiochem, 12(17), 2630–2639.PubMedCrossRefGoogle Scholar
  35. 35.
    Celej, M. S., Sarroukh, R., Goormaghtigh, E., Fidelio, G. D., Ruysschaert, J. M., & Raussens, V. (2012). Toxic prefibrillar alpha-synuclein amyloid oligomers adopt a distinctive antiparallel beta-sheet structure. Biochemical Journal, 443(3), 719–726.PubMedCrossRefGoogle Scholar
  36. 36.
    McMasters, M. J., Hammer, R. P., & McCarley, R. L. (2005). Surface-induced aggregation of beta amyloid peptide by co-substituted alkanethiol monolayers supported on gold. Langmuir, 21(10), 4464–4470.PubMedCrossRefGoogle Scholar
  37. 37.
    Greenfield, N. J. (2006). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1(6), 2876–2890.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kim, J. R., & Murphy, R. M. (2004). Mechanism of accelerated assembly of beta-amyloid filaments into fibrils by KLVFFK(6). Biophysical Journal, 86(5), 3194–3203.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Der-Sarkissian, A., Jao, C. C., Chen, J., & Langen, R. (2003). Structural organization of alpha-synuclein fibrils studied by site-directed spin labeling. The Journal of Biological Chemistry, 278(39), 37530–37535.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen, M., Margittai, M., Chen, J., & Langen, R. (2007). Investigation of alpha-synuclein fibril structure by site-directed spin labeling. The Journal of Biological Chemistry, 282(34), 24970–24979.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Heise, H., Hoyer, W., Becker, S., Andronesi, O. C., Riedel, D., & Baldus, M. (2005). Molecular-level secondary structure, polymorphism, and dynamics of full-length alpha-synuclein fibrils studied by solid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 102(44), 15871–15876.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Tuttle, M. D., Comellas, G., Nieuwkoop, A. J., Covell, D. J., Berthold, D. A., Kloepper, K. D., Courtney, J. M., Kim, J. K., Barclay, A. M., Kendall, A., Wan, W., Stubbs, G., Schwieters, C. D., Lee, V. M., George, J. M., & Rienstra, C. M. (2016). Solid-state NMR structure of a pathogenic fibril of full-length human alpha-synuclein. Nature Structural & Molecular Biology, 23(5), 409–415.CrossRefGoogle Scholar
  43. 43.
    Qin, Z., Hu, D., Han, S., Hong, D. P., & Fink, A. L. (2007). Role of different regions of alpha-synuclein in the assembly of fibrils. Biochemistry, 46(46), 13322–13330.PubMedCrossRefGoogle Scholar
  44. 44.
    Apetri, M. M., Maiti, N. C., Zagorski, M. G., Carey, P. R., & Anderson, V. E. (2006). Secondary structure of alpha-synuclein oligomers: characterization by raman and atomic force microscopy. Journal of Molecular Biology, 355(1), 63–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Stsiapura, V. I., Maskevich, A. A., Kuzmitsky, V. A., Turoverov, K. K., & Kuznetsova, I. M. (2007). Computational study of thioflavin T torsional relaxation in the excited state. The Journal of Physical Chemistry. A, 111(22), 4829–4835.PubMedCrossRefGoogle Scholar
  46. 46.
    Rahbarnia, L., Farajnia, S., Babaei, H., Majidi, J., Veisi, K., Ahmadzadeh, V., & Akbari, B. (2017). Evolution of phage display technology: from discovery to application. Journal of Drug Targeting, 25(3), 216–224.PubMedCrossRefGoogle Scholar
  47. 47.
    Wan, J., & Alewood, P. F. (2016). Peptide-decorated dendrimers and their bioapplications. Angewandte Chemie (International Ed. in English), 55(17), 5124–5134.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular Engineering|New York University, Tandon School of EngineeringBrooklynUSA

Personalised recommendations