Advertisement

Metabolic Engineering of Chlamydomonas reinhardtii for Enhanced β-Carotene and Lutein Production

  • Jayant Pralhad Rathod
  • Chaitali Vira
  • Arvind M. Lali
  • Gunjan PrakashEmail author
Article
  • 46 Downloads

Abstract

The metabolic engineering of Chlamydomonas reinhardtii, one of the fastest-growing microalgae, is a potential alternative for enhanced carotenoid productivity. CrtYB (phytoene-β-carotene synthasePBS) gene from red yeast Xanthophyllomyces dendrorhous encodes for a bifunctional enzyme that harbours both phytoene synthase (psy) and lycopene cyclization (lcyb) activities. Heterologous expression of this bifunctional PBS gene led to 38% enhancement in β-carotene along with 60% increase in the lutein yields under low light conditions of 75 μmol photons m−2 s−1. Short Duration-High Light induction strategy led to overall 72% and 83% increase in β-carotene and lutein yield reaching up to 22.8 mg g−1 and 8.9 mg g−1, respectively. This is the first report of expression of heterologous bifunctional PBS gene resulting in simultaneous enhancement in β-carotene and lutein content in phototrophic engineered cells.

Graphical Abstract

Keywords

Chlamydomonas reinhardtii Phytoene-β-carotene synthase Red yeast β-Carotene Lutein 

Notes

Author’s Contribution

Experiments were planned by JPR, CV, AML and GP and conducted by JPR. Data was analyzed by JPR, CV and GP. Manuscript is written by GP and CV. Funding for the work was facilitated by AML.

Funding Information

This study was supported by the Department of Biotechnology, Ministry of Science & Technology, Government of India (No. BT/PR13796/PBD/ 26/139/2010). Jayant Pralhad Rathod is thankful to the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for providing the fellowship during the above research work.

Supplementary material

12010_2019_3194_MOESM1_ESM.docx (80 kb)
ESM 1 (DOCX 80 kb)

References

  1. 1.
    Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6, 52–63.CrossRefGoogle Scholar
  2. 2.
    Cezare-Gomes, E. A., del Carmen Mejia-da-Silva, L., Pérez-Mora, L. S., Matsudo, M. C., Ferreira-Camargo, L. S., Singh, A. K., de Carvalho, J. C. M. (2019). Potential of Microalgae Carotenoids for Industrial Application. Applied Biochemistry & Biotechnology, 188(3), 602–634.CrossRefGoogle Scholar
  3. 3.
    Scaife, M. A., Nguyen, G. T., Rico, J., Lambert, D., Helliwell, K. E., & Smith, A. G. (2015). Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. The Plant Journal, 82(3), 532–546.CrossRefGoogle Scholar
  4. 4.
    Cordero, B. F., Couso, I., León, R., Rodríguez, H., & Vargas, M. Á. (2011). Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Applied Microbiology and Biotechnology, 91(2), 341–351.CrossRefGoogle Scholar
  5. 5.
    Couso, I., Vila, M., Rodriguez, H., Vargas, M. A., & Leon, R. (2011). Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnology Progress, 27(1), 54–60.CrossRefGoogle Scholar
  6. 6.
    Liu, J., Gerken, H., Huang, J., & Chen, F. (2013). Engineering of an endogenous phytoene desaturase gene as a dominant selectable marker for Chlamydomonas reinhardtii transformation and enhanced biosynthesis of carotenoids. Process Biochemistry, 48(5-6), 788–795.CrossRefGoogle Scholar
  7. 7.
    Vira, C., Prakash, G., Rathod, J. P., & Lali, A. M. (2016). Cloning, expression, and purification of Chlamydomonas reinhardtii CC-503 sedoheptulose 1, 7-bisphosphatase in Escherichia coli. Preparative Biochemistry & Biotechnology, 46(8), 810–814.CrossRefGoogle Scholar
  8. 8.
    Rasala, B. A., Lee, P. A., Shen, Z., Briggs, S. P., Mendez, M., & Mayfield, S. P. (2012). Robust expression and secretion of Xylanase1 in Chlamydomonas reinhardtii by fusion to a selection gene and processing with the FMDV 2A peptide. PLoS One, 7(8), e43349.CrossRefGoogle Scholar
  9. 9.
    Leon, R., Couso, I., & Fernández, E. (2007). Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii. Journal of Biotechnology, 130(2), 143–152.CrossRefGoogle Scholar
  10. 10.
    Rathod, J. P., Prakash, G., Vira, C., & Lali, A. M. (2016). Trehalose phosphate synthase overexpression in Parachlorella kessleri improves growth and photosynthetic performance under high light conditions. Preparative Biochemistry & Biotechnology, 46(8), 803–809.CrossRefGoogle Scholar
  11. 11.
    Garcia-Plazaola, J. I., & Becerril, J. M. (1999). A rapid high-performance liquid chromatography method to measure lipophilic antioxidants in stressed plants: simultaneous determination of carotenoids and tocopherols. Phytochemical Analysis, 10(6), 307–313.CrossRefGoogle Scholar
  12. 12.
    Visser, H., van Ooyen, A. J., & Verdoes, J. C. (2003). Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Research, 4(3), 221–231.CrossRefGoogle Scholar
  13. 13.
    Verdoes, J. C., Krubasik, P., Sandmann, G., & van Ooyen, A. J. J. (1999). Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Molecular and General Genetics MGG, 262(3), 453–461.CrossRefGoogle Scholar
  14. 14.
    Verwaal, R., Wang, J., Meijnen, J. P., Visser, H., Sandmann, G., van den Berg, J. A., & van Ooyen, A. J. (2007). High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Applied and Environmental Microbiology, 73(13), 4342–4350.CrossRefGoogle Scholar
  15. 15.
    Koh, H. G., Kang, N. K., Kim, E. K., Jeon, S., Shin, S. E., Lee, B., & Chang, Y. K. (2018). Advanced multigene expression system for Nannochloropsis salina using 2A self-cleaving peptides. Journal of Biotechnology, 278, 39–47.CrossRefGoogle Scholar
  16. 16.
    Molino, J. V. D., de Carvalho, J. C. M., & Mayfield, S. P. (2018). Evaluation of secretion reporters to microalgae biotechnology: blue to red fluorescent proteins. Algal Research, 31, 252–261.CrossRefGoogle Scholar
  17. 17.
    Scaife, M. A., & Smith, A. G. (2016). Towards developing algal synthetic biology. Biochemical Society Transactions, 44(3), 716–722.CrossRefGoogle Scholar
  18. 18.
    Verdoes, J. C., Sandmann, G., Visser, H., Diaz, M., van Mossel, M., & van Ooyen, A. J. (2003). Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Applied and Environmental Microbiology, 69(7), 3728–3738.CrossRefGoogle Scholar
  19. 19.
    Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V., Ghosh, T., Dubey, S., & Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244, 1216–1226.CrossRefGoogle Scholar
  20. 20.
    Couso, I., Vila, M., Vigara, J., Cordero, B. F., Vargas, M. Á., Rodríguez, H., & León, R. (2012). Synthesis of carotenoids and regulation of the carotenoid biosynthesis pathway in response to high light stress in the unicellular microalga Chlamydomonas reinhardtii. European Journal of Phycology, 47(3), 223–232.CrossRefGoogle Scholar
  21. 21.
    Ma, R., Zhao, X., Xie, Y., Ho, S. H., & Chen, J. (2018). Enhancing lutein productivity of Chlamydomonas sp. via high-intensity light exposure with corresponding carotenogenic genes expression profiles. Bioresource Technology, 275, 416–420.CrossRefGoogle Scholar
  22. 22.
    Schroda, M., Blöcker, D., & Beck, C. F. (2000). The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. The Plant Journal, 21(2), 121–131.CrossRefGoogle Scholar
  23. 23.
    Gimpel, J. A., Henríquez, V., & Mayfield, S. P. (2015). In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Frontiers in Microbiology, 6, 1376.CrossRefGoogle Scholar
  24. 24.
    Morikawa, T., Uraguchi, Y., Sanda, S., Nakagawa, S., & Sawayama, S. (2018). Overexpression of DnaJ-like chaperone enhances carotenoid synthesis in Chlamydomonas reinhardtii. Applied Biochemistry and Biotechnology, 184(1), 80–91.CrossRefGoogle Scholar
  25. 25.
    Harjes, C. E., Rocheford, T. R., Bai, L., Brutnell, T. P., Kandianis, C. B., Sowinski, S. G., Stapleton, A. E., Vallabhaneni, R., Williams, M., Wurtzel, E. T., Yan, J., & Buckler, E. S. (2008). Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science, 319(5861), 330–333.CrossRefGoogle Scholar
  26. 26.
    Cordero, B. F., Couso, I., Leon, R., Rodriguez, H., & Vargas, M. A. (2012). Isolation and characterization of a lycopene ε-cyclase gene of Chlorella (Chromochloris) zofingiensis. Regulation of the carotenogenic pathway by nitrogen and light. Marine Drugs, 10(9), 2069–2088.CrossRefGoogle Scholar
  27. 27.
    Ben-Amotz, A., Katz, A., & Avron, M. (1982). Accumulation of β-carotene in halotolerant alge: purification and characterization of β-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). Journal of Phycology, 18(4), 529–537.CrossRefGoogle Scholar
  28. 28.
    Guedes, A. C., Amaro, H. M., & Malcata, F. X. (2011). Microalgae as sources of carotenoids. Marine Drugs, 9(4), 625–644.CrossRefGoogle Scholar
  29. 29.
    Lin, J. H., Lee, D. J., & Chang, J. S. (2015). Lutein production from biomass: marigold flowers versus microalgae. Bioresource Technology, 184, 421–428.CrossRefGoogle Scholar
  30. 30.
    Sun, H., Mao, X., Wu, T., Ren, Y., Chen, F., & Liu, B. (2018). Novel insight of carotenoid and lipid biosynthesis and their roles in storage carbon metabolism in Chlamydomonas reinhardtii. Bioresource Technology, 263, 450–457.CrossRefGoogle Scholar
  31. 31.
    Fields, F. J., Ostrand, J. T., & Mayfield, S. P. (2018). Fed-batch mixotrophic cultivation of Chlamydomonas reinhardtii for high-density cultures. Algal Research, 33, 109–117.CrossRefGoogle Scholar
  32. 32.
    Kadono T., Kira N., Suzuki K., Iwata O., Ohama T., Okada S., Nishimura Y., Akakabe M., Tsuda M.,  & Adachi M. (2015) Effect of an Introduced Phytoene Synthase Gene Expression on Carotenoid Biosynthesis in the Marine Diatom Phaeodactylum tricornutum. Marine Drugs 13(8):5334–5357Google Scholar
  33. 33.
    Ismaiel M. M., El-Ayouty Y. M., Said A. A.,  & Fathey H. A. (2018) Transformation of Dunaliella parva with PSY gene: Carotenoids show enhanced antioxidant activity under polyethylene glycol and calcium treatments. Biocatalysis and Agricultural Biotechnology 16:378–384Google Scholar
  34. 34.
    Lohr M., Im C. S., & Grossman A. R. (2005) Genome-Based Examination of Chlorophyll and Carotenoid Biosynthesis in Chlamydomonas reinharditii. Plant Physiology 138(1):490–515Google Scholar
  35. 35.
    Contreras G., Barahona S., Rojas M. C., Baeza M., Cifuentes V., & Alcaíno J. (2013) Increase in the astaxanthin synthase gene (crtS) dose by in vivo DNA fragment assembly in Xanthophyllomyces dendrorhous. BMC Biotechnology 13(1):84Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.DBT-ICT Centre for Energy BiosciencesInstitute of Chemical Technology Institute of Chemical TechnologyMumbaiIndia
  2. 2.Department of Chemical EngineeringInstitute of Chemical Technology Institute of Chemical TechnologyMumbaiIndia

Personalised recommendations