Advertisement

Drug Delivery of Amphotericin B through Core-Shell Composite Based on PLGA/Ag/Fe3O4: In Vitro Test

  • Shiva Sadat Akhavi
  • Shahram Moradi DehaghiEmail author
Article
  • 28 Downloads

Abstract

This research aimed at developing and designing a slow and targeted delivery of Amphotericin B (AmB) antibiotic by placing three types of shells containing different ratios of biodegradable and biocompatible polymers poly (D, L-lactide)-co-(glycolide) (PLGA), polyethylene glycol (PEG), and polyvinyl pyrrolidone (PVP) on core-shell structures including silver nanoparticles that were activated with magnetic nanoparticles (MNPs). Emulsion solvent evaporation technique was employed to synthesize three types of shells: (i) (PVP-PEG) (100:20, w/w), (ii) (PLGA-PEG) (100:20, w/w), and (iii) (PLGA-PEG) (50:10, w/w) introduced as D1, D2, and D3 respectively. The in vitro release of AmB was examined in aqueous medium phosphate buffer saline (PBS) in pH~ 7.2. Several spectroscopy methods characterized the structure and properties of the nanoparticles. In vitro antifungal activity of pure AmB and D1, D2, and D3 was studied against Candida albicans (C. albicans). The results explained that frequency of drug released from D2 at the first 10 h was (18%) that was compared with D1 (30%) and D3 (24%) at the same time. D2 had more efficient and longer targeted controlled release. The findings showed that D2 can be used as an effective carrier for in vitro targeted controlled release and D2 and D3 had powerful activity against C. albicans.

Keywords

Drug delivery Amphotericin B Magnetic nanoparticles Core-shell Emulsion solvent evaporation 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Jain, K. K. (2008). Drug delivery systems. Totowa, USA: Humana.CrossRefGoogle Scholar
  2. 2.
    Nabipour, H. (2019). Design and evaluation of non-steroidal anti-inflammatory drug intercalated into layered zinc hydroxide as a drug delivery system. Journal of Inorganic and Organometallic Polymers, 29(5), 1807–1817.  https://doi.org/10.1007/s10904-019-01143-x.CrossRefGoogle Scholar
  3. 3.
    Saltzman, W. M. (2001). Drug delivery engineering principles for drug therapy. USA: Oxford Press.Google Scholar
  4. 4.
    Perrie, Y., & Redes, T. (2012). FASTtrack: pharmaceutics-drug delivery and targeting (second ed.). USA: Pharmaceutical Press.Google Scholar
  5. 5.
    Yun, Y. H., Lee, B. K., & Park, K. (2015). Controlled drug delivery: historical perspective for the next generation. Journal of Controlled Release, 219, 2–7.  https://doi.org/10.1016/j.jconrel.2015.10.005.CrossRefGoogle Scholar
  6. 6.
    Benita, S. (2006). Microencapsulation methods and industrial application (2nd ed.). Boca Raton, USA: CRC.Google Scholar
  7. 7.
    De Villiers, M. M., Aramwit, P., & Kwon, G. S. (2008). Nanotechnology in drug delivery. USA: AAPS.Google Scholar
  8. 8.
    Arias, J. L. (2014). Nanotechnology and drug delivery (Vol. 1: Nanoplatforms in Drug Delivery). USA: CRC.CrossRefGoogle Scholar
  9. 9.
    Wahajuddin, S. A. (2012). Superparamagnetic iron oxide nanoparticle: magnetic nanoplatforms as drug carriers. International Journal of Nanomedicine, 7, 3445–3471.  https://doi.org/10.2147/IJN.S30320.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lee, J. H., Kim, J. W., & Cheon, J. (2013). Magnetic nanoparticles for multi-imaging and drug delivery. Molecules and Cells, 35(4), 274–284.  https://doi.org/10.1007/s10059-013-0103-0.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Figuerola, A., Di Corato, R., Manna, L., & Pellegrino, T. (2010). From iron oxide nanoparticle towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacological Research, 62(2), 126–143.  https://doi.org/10.1016/j.phrs.2009.12.012.CrossRefPubMedGoogle Scholar
  12. 12.
    Mishra, A. K. (2013). Nanomedicine for drug delivery and therapeutics. USA: Wiley.CrossRefGoogle Scholar
  13. 13.
    Kaparissides, C., Alexandridou, S., Kotti, K., & Chaitidou, S. (2006). Recent advanced in novel drug delivery systems. Journal of Nanotechnology, 2, 1–11.  https://doi.org/10.2240/azojono0111.CrossRefGoogle Scholar
  14. 14.
    Yashwant, P. (2016). Recent developments in nanoparticulate drug delivery systems. In Y. Pathak & D. Thassu (Eds.), Drug delivery nanoparticles formation and characterization (pp. 1–15). New York: Informa Healthcare Inc.Google Scholar
  15. 15.
    Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical Reviews, 116(4), 2602–2663.  https://doi.org/10.1021/acs.chemrev.5b00346.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Singh, R., & Lillard Jr., J. W. (2009). Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology, 86(3), 215–223.  https://doi.org/10.1016/j.yexmp.2008.12.004.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    D’Mello, R. S., Das, K. P., & Das, N. G. (2016). Polymeric nanoparticles for small-molecule drugs: biodegradation of polymers and fabrication of nanoparticles. In Y. Pathak & D. Thassu (Eds.), Drug delivery nanoparticles formation and characterization (pp. 16–34). New York: Informa Healthcare Inc.Google Scholar
  18. 18.
    Parveen, S., & Sahoo, S. K. (2008). Polymeric nanoparticles for cancer therapy. Journal of Drug Targeting, 16(2), 108–123.  https://doi.org/10.1080/10611860701794353.CrossRefPubMedGoogle Scholar
  19. 19.
    Danhier, F., Ansorena, E., Silva, J. M., Coco, R., Breton, A. L., & Preat, V. (2012). PLGA-based nanoparticles: an overview of biomedical applications. Journal of Controlled Release, 161(2), 505–522.  https://doi.org/10.1016/j.jconrel.2012.01.043.CrossRefPubMedGoogle Scholar
  20. 20.
    Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces. B, Biointerfaces, 75(1), 1–18.  https://doi.org/10.1016/j.colsurfb.2009.09.001.CrossRefPubMedGoogle Scholar
  21. 21.
    Stolink, S., Illum, L., & Davis, S. S. (1995). Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 16(2–3), 195–214.  https://doi.org/10.1016/0169-409X(95)00025-3.CrossRefGoogle Scholar
  22. 22.
    Owens III, D. E., & Peppas, N. A. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics, 307(1), 93–102.  https://doi.org/10.1016/j.ijpharm.2005.10.010.CrossRefPubMedGoogle Scholar
  23. 23.
    Jee, J.-P., McCoy, A., & Mecozzi, S. (2012). Encapsulation and release of amphotericin B from an ABC triblock fluorous copolymer. Pharmaceutical Research, 29(1), 69–82.  https://doi.org/10.1007/s11095-011-0511-9.CrossRefPubMedGoogle Scholar
  24. 24.
    Reis, C. P., Neufeld, R. J., Ribeiro, A. J., & Veiga, F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 2(1), 8–21.  https://doi.org/10.1016/j.nano.2005.12.003.CrossRefGoogle Scholar
  25. 25.
    Wu, T. C. (1994). On the development of antifungal agents: perspective of the U.S. Food and Drug Administration. Clinical Infectious Disease, 19(Suppl.1), S54–S58.  https://doi.org/10.1093/clinids/19.supplement_1.s54.CrossRefGoogle Scholar
  26. 26.
    Zu, Y., Sun, W., Zhao, X., Wang, W., Li, Y., Ge, Y., Liu, Y., & Wang, K. (2014). Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation. European Journal of Pharmaceutical Sciences, 53, 109–117.  https://doi.org/10.1016/j.ejps.2013.12.005.CrossRefPubMedGoogle Scholar
  27. 27.
    Ménez, C., Legrand, P., Rosilio, V., Lesieur, S., & Barratt, G. (2007). Physicochemical characterization of molecular assemblies of miltefosine and amphotericin B. Molecular Pharmaceutics, 4(2), 281–288.  https://doi.org/10.1021/mp0601143.CrossRefPubMedGoogle Scholar
  28. 28.
    Dutcher, J. D. (1968). The discovery and development of amphotericin B. Diseases of the Chest, 54(Suppl.1), 296–298.  https://doi.org/10.1378/chest.54.supplement_1.296.CrossRefGoogle Scholar
  29. 29.
    Torrado, J. J., Espada, R., Ballesteros, M. P., & Torrado-Santiago, S. (2008). Amphotericin B formulations and drug targeting. Journal of Pharmaceutical Sciences, 97(7), 2405–2425.  https://doi.org/10.1002/jps.21179.CrossRefPubMedGoogle Scholar
  30. 30.
    Van de Ven, H., Paulussen, C., Feijens, P. B., Matheeussen, A., Rombaut, P., Kayaert, P., Van den Mooster, G., Weyenberg, W., Cos, P., Maes, L., & Ludwing, A. (2012). PLGA nanoparticles and nanosuspensions with amphotericin B: potent in vitro and in vivo alternatives to Fungizone and AmBisome. Journal of Controlled Release, 161(3), 795–803.  https://doi.org/10.1016/j.jconrel.2012.05.037.CrossRefPubMedGoogle Scholar
  31. 31.
    Conover, C. D., Zhao, H., Longley, C. B., Shum, K. L., & Greenwald, R. B. (2003). Utility of poly (ethylene glycol) conjugation to create prodrugs of amphotericin B. Bioconjugate Chemistry, 14(3), 661–666.  https://doi.org/10.1021/bc0256594.CrossRefPubMedGoogle Scholar
  32. 32.
    Nahar, M., & Jain, N. K. (2009). Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharmaceutical Research, 26(12), 2588–2598.  https://doi.org/10.1007/s11095-009-9973-4.CrossRefPubMedGoogle Scholar
  33. 33.
    Khalafalla, S., & Reimers, G. (1980). Preparation of dilution-stable aqueous magnetic fluids. IEEE Transactions on Magnetics, 16(2), 178–183.  https://doi.org/10.1109/TMAG.1980.1060578.CrossRefGoogle Scholar
  34. 34.
    Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C.-Y., Kim, Y.-K., Lee, Y. S., Jeong, D. H., & Cho, M.-H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), 95–101.  https://doi.org/10.1016/j.nano.2006.12.001.CrossRefGoogle Scholar
  35. 35.
    Morris, M. C., Depollier, J., Merry, J., & Heitz, F. (2001). A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nature Biotechnology, 19(12), 1173–1176.  https://doi.org/10.1038/nbt1201-1173.CrossRefPubMedGoogle Scholar
  36. 36.
    Carraro, T. C. M. M., Khalil, N. M., & Mainardes, R. M. (2016). Amphotericin B-loaded polymeric nanoparticle: formulation optimization by factorial design. Pharmaceutical Development and Technology, 21(2), 140–146.  https://doi.org/10.3109/10837450.2014.979942.CrossRefPubMedGoogle Scholar
  37. 37.
    AL-Quadeib, B. T., Radwan, M. A., Šiller, L., Horrocks, B., & Wright, M. C. (2015). Stealth amphotericin B for oral drug delivery: in vitro optimization. Saudi Pharmaceutical Journal, 23(3), 290–302.  https://doi.org/10.1016/j.jsps.2014.11.004.CrossRefPubMedGoogle Scholar
  38. 38.
    Taatabaei Mirakabad, F. S., Akbarzadeh, A., Milani, M., Zarghami, N., Taheri-Anganeh, M., Zeighamian, V., Badrzadeh, F., & Rahmati-Yamchi, M. (2016). A comparison between the cytotoxic effects of pure curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 423–430.  https://doi.org/10.3109/21691401.2014.955108.CrossRefGoogle Scholar
  39. 39.
    Yang, Y., Ren, S., Zhang, X., Yu, Y., Liu, C., Yang, J., & Miao, L. (2018). Safety and efficacy of PLGA (Ag- Fe3O4)-coated dental implants in inhibiting bacteria adherence and osteogenic inducement under a magnetic field. International Journal of Nanomedicine, 13, 3751–3762.  https://doi.org/10.2147/IJN.S159860.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Choi, K. C., Bang, J. Y., Kim, P. I., Kim, C., & Song, C. E. (2008). Amphotericin B-incorporated polymeric micelles composed of poly (D, L-lactide-co-glycolide)/dextran graft copolymer. International Journal of Pharmaceutics, 355(1–2), 224–230.  https://doi.org/10.1016/j.ijpharm.2007.12.011.CrossRefPubMedGoogle Scholar
  41. 41.
    Kesavan, M. P., Kotla, N. G., Ayyanaar, S., Kumar, R. G., Sivaraman, G., Webster, T. J., & Rajesh, J. (2018). A theranostic nanocomposite system based on iron oxide-drug nanocages for targeted magnetic field responsive chemotherapy. Nanomedicine: Nanotechnology, Biology and Medicine, 14(5), 1643–1654.  https://doi.org/10.1016/j.nano.2018.04.013.CrossRefGoogle Scholar
  42. 42.
    Hong, S., Li, Z., Li, C., Dong, C., & Shuang, S. (2018). β-Cyclodextrin grafted polypyrrole magnetic nanocomposites toward the targeted delivery and controlled release of doxorubicin. Applied Surface Science, 427, 1189–1198.  https://doi.org/10.1016/j.apsusc.2017.08.201.CrossRefGoogle Scholar
  43. 43.
    Pachla, A., Lendzion-Bieluń, Z., Moszyński, D., Markowska-Szczupak, A., Narkiewicz, U., WrÓbel, R. J., Guskos, N., & Żołnierkiewicz, G. (2016). Synthesis and antibacterial properties of Fe3O4-Ag nanostructures. Polish Journal of Chemical Technology, 18(4), 110–116.  https://doi.org/10.1515/pjct-2016-0079.CrossRefGoogle Scholar
  44. 44.
    Radwan, M. A., AL-Quadeib, B. T., Šiller, L., Wright, M. C., & Horrocks, B. (2017). Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Drug Delivery, 24(1), 40–50.  https://doi.org/10.1080/10717544.2016.1228715.CrossRefPubMedGoogle Scholar
  45. 45.
    Jung, S. H., Lim, D. H., Jung, S. H., Lee, J. E., Jeong, K.-S., Seong, H., & Shin, B. C. (2009). Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. European Journal of Pharmaceutical Sciences, 37(3–4), 313–320.  https://doi.org/10.1016/j.ejps.2009.02.021.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryIslamic Azad University, Tehran North BranchTehranIran

Personalised recommendations