Catalytic Activity of Immobilized Chymotrypsin on Hybrid Silica-Magnetic Biocompatible Particles and Its Application in Peptide Synthesis

  • Gulay BayramogluEmail author
  • Bekir Salih
  • M. Yakup Arica


In this work, novel silica hybrid magnetic particles with biocompatible surface were designed as a support for enzyme immobilization, and the immobilized chymotrypsin (CT) performance was clarified as a model biocatalyst. CT is used in food technology for drink clarification and protein hydrolysis. The enzyme was directly immobilized onto polydopamine-grafted magnetic silica particles (MNP@SiO2@PDA-CT) via the Schiff base reaction. Immobilized enzyme had broadened for both pH and temperature profiles compared with the native CT. The MNP@SiO2@PDA-CT system also improved in thermostability compared with the native enzyme. The immobilized CT was operated in a continuous enzyme reactor (CER) for the hydrolysis of different proteins (i.e., cytochrome c (Cyt c), human serum albumin (HSA), human immunoglobulin G (HIgG), and lysozyme (Lys)). The peptide synthesis rate was shown to decrease as a function of increasing flow rate. The catalytic activity of the CER remained stable for 6.0 h in a continuous operation period; thus, the presented method may increase applicability in the food technology area. The immobilized CT in the CER showed a good hydrolysis performance for all the tested model proteins. The peptides hydrolyzed from the tested proteins were analyzed with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF-MS). Results show that the MNP@SiO2@PDA-CT system also permits for the applicability in the area of proteomic research.


Magnetic material Chymotrypsin Enzyme immobilization Enzyme reactor Protein digestion MALDI-ToF-MS 


Funding Information

This work was supported by the Ministry of Development–Republic of Turkey with the project number: FAY-2015-7201.

Supplementary material

12010_2019_3158_MOESM1_ESM.docx (736 kb)
ESM 1 (DOCX 736 kb)


  1. 1.
    Arica, M. Y., Soydogan, H., & Bayramoglu, G. (2010). Reversible immobilization of Candida rugosa lipase on fibrous polymer grafted and sulfonated p(HEMA/EGDMA) beads. Bioprocess and Biosystems Engineering, 33, 227–236.CrossRefGoogle Scholar
  2. 2.
    Bayramoglu, G., Kayili, H. M., Oztekin, M., Salih, B., & Arica, M. Y. (2020). Hydrophilic spacer-arm containing magnetic nanoparticles for immobilization of proteinase K: employment for speciation of proteins for mass spectrometry-based analysis. Talanta, 206, 120218.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Dos Santos, J. C. S., Rueda, N., Barbosa, O., Fernandez-Sanchez, J. F., Medina-Castillo, A. L., Ramon-Marquez, T., Arias-Martos, M. C., Millan-Linares, M. C., Pedroche, J., Del Mar Yust, M., Goncalves, L. R. B., & Fernandez-Lafuente, R. (2015). Characterization of supports activated with divinyl sulfone as a tool to immobilize and stabilize enzymes via multipoint covalent attachment application to chymotrypsin. RSC Advances, 5, 20639.CrossRefGoogle Scholar
  4. 4.
    Ulu, A., Noma, S. A. A., Koytepe, S., & Ates, B. (2019). Chloro-modified magnetic fe3o4@mcm-41 core–shell nanoparticles for l-asparaginase immobilization with improved catalytic activity, reusability, and storage stability. Applied Biochemistry and Biotechnology, 187, 938–956.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Oh, H., & Lee, K. H. (2013). Activity and stability of immobilized enzyme on silk sericin bead. International Journal of Industrial Entomology, 27, 329–332.CrossRefGoogle Scholar
  6. 6.
    Bayramoglu, G., Akbulut, A., & Arica, M. Y. (2013). Immobilization of tyrosinase on modified diatom biosilica: enzymatic removal of phenolic compounds from aqueous solution. Journal of Hazardous Materials, 244–245, 528–536.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kumaria, S., Chauhana, G. S., Ahn, J.-H., & Reddy, N. S. (2016). Bio-waste derived dialdehyde cellulose ethers as supports for chymotrypsin immobilization. International Journal of Biological Macromolecules, 85, 227–237.CrossRefGoogle Scholar
  8. 8.
    Goncalves, M. C. P., Kieckbusch, T. G., Perna, R. F., Fujimoto, J. T., Morales, S. A. V., & Romanelli, J. P. (2019). Trends on enzyme immobilization researches based on bibliometric analysis. Process Biochemistry, 76, 95–110.CrossRefGoogle Scholar
  9. 9.
    Azevedo, R. D. S., Amaral, I. P. G., Ferreira, A. C. M., Esposito, T. S., & Bezerra, R. S. (2018). Use of fish trypsin immobilized onto magnetic-chitosan composite as a new tool to detect anti-nutrients in aqua-feeds. Food Chemistry, 257, 302–330.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Gennari, A., Mobayed, F. H., Nervis, B. D. R., Benvenutti, E. V., Nicolodi, S., da Silveira, N. P., Volpato, G., & de Souza, V. C. F. (2019). Immobilization of β-galactosidases on magnetic nanocellulose: textural, morphological, magnetic, and catalytic properties. Biomacromolecules, 20, 2315–2326.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Arica, M. Y. (2000). Epoxy-derived phema membrane for use bioactive macromolecules immobilization: covalently bound urease in a continuous model system. Journal of Applied Polymer Science, 77, 2000–2008.CrossRefGoogle Scholar
  12. 12.
    Arica, T. A., Kuman, M., Gercel, O., & Ayas, E. (2019). Poly(dopamine) grafted bio-silica composite with tetraethylenepentamine ligands for enhanced adsorption of pollutants. Chemical Engineering Research and Design, 141, 317–327.CrossRefGoogle Scholar
  13. 13.
    Siddiqui, I., & Husain, Q. (2019). Stabilization of polydopamine modified silver nanoparticles bound trypsin: insights on protein hydrolysis. Colloids and Surface B, 173, 733–741.CrossRefGoogle Scholar
  14. 14.
    Zhang, L., Guo, X., Song, Y., Tan, N., Cheng, P. I., Xiang, J., & Du, W. (2018). Bioadhesive immobilize agarase on magnetic ferriferous by polydopamine. Materials Science and Engineering: C, 93, 218–225.CrossRefGoogle Scholar
  15. 15.
    Messersmith, P. B., Lee, H., Dellatore, S. M., & Miller, W. M. (2007). Mussel-inspired surface chemistry for multifunctional coatings. Science, 318, 426–430.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yoshimoto, M., Yamada, J., Baba, M., & Walde, P. (2016). Enhanced heat stability of chymotrypsin through single-enzyme confinement in attoliter liposomes. Chembiochemistry, 17(13), 1221–1224.CrossRefGoogle Scholar
  17. 17.
    Bayramoglu, G., & Arica, M. Y. (2008). Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. Journal of Hazardous Materials, 156(1-3), 148–155.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Tang, A., Zhang, Y., Wei, T., Wu, J., Li, Q., & Liu, Y. (2019). Immobilization of candida cylindracea lipase by covalent attachment on glu-modified bentonite. Applied Biochemistry and Biotechnology, 187(3), 870–883.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Xie, X., Luo, P., Han, J., Chen, T., Wang, Y., Cai, Y., & Liud, Q. (2019). Horseradish peroxidase immobilized on the magnetic composite microspheres for high catalytic ability and operational stability. Enzyme and Microbial Technology, 122, 26–35.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Zhao, J.-F., Lin, J.-P., Yang, L.-R., & Wu, M.-B. (2019). Enhanced performance of rhizopus oryzae, lipase by reasonable immobilization on magnetic nanoparticles and its application in synthesis 1,3-diacyglycerol. Applied Biochemistry and Biotechnology, 188(3), 677–689.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Fu, M., Xing, J., & Ge, Z. (2019). Preparation of laccase-loaded magnetic nanoflowers and their recycling for efficient degradation of bisphenol A. The Science of the Total Environment, 651, 2857–2865.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Mei, S., Shi, J., Zhang, S., Wang, Y., Wu, Y., Jiang, Z., & Wu, H. (2019). Nanoporous phyllosilicate assemblies for enzyme immobilization. ACS Applied Biomaterials, 2, 777–786.CrossRefGoogle Scholar
  23. 23.
    Banerjee, R., Katsenovich, Y., Lagos, L., McIintosh, M., Zhang, X., & Li, C.-Z. (2010). Nanomedicine: magnetic nanoparticles and their biomedical applications. Current Medicinal Chemistry, 17, 3120–3141.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Talekar, S., Ghodake, V., Ghotage, T., Rathod, P., Deshmukh, P., Nadar, S., Mulla, M., & Ladole, M. (2012). Novel magnetic cross-linked enzyme aggregates (magnetic CLEAs) of alpha amylase. Bioresource Technology, 123, 542–547.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Banerjee, R., Katsenovich, Y., Lagos, L., Senn, M., Naja, M., Balsamo, V., Pannell, K. H., & Li, C.-Z. (2010). Functional magnetic nano-shells integrated nanosensor for trace analysis of environmental uranium contamination. Electrochimica Acta, 55, 7897–7902.CrossRefGoogle Scholar
  26. 26.
    Bayramoglu, G., Ozalp, V. C., & Arica, M. Y. (2014). Magnetic polymeric beads functionalized with different mixed-mode ligands for reversible immobilization of trypsin. Industrial and Engineering Chemistry Research, 53, 132–140.CrossRefGoogle Scholar
  27. 27.
    Bayramoglu, G., Salih, B., Akbulut, A., & Arica, M. Y. (2019). Biodegradation of Cibacron Blue 3GA by insolubilized laccase and identification of enzymatic byproduct using MALDI-TOF-MS: toxicity assessment studies by Daphnia magna and Chlorella vulgaris. Ecotoxicolology and Environmental Safety, 170, 453–460.CrossRefGoogle Scholar
  28. 28.
    Arica, M. Y., Salih, B., Celikbicak, O., & Bayramoglu, G. (2017). Immobilization of laccase on the fibrous polymer-grafted film and study of textile dye degradation by MALDI–ToF-MS. Chemical Engineering Research and Design, 128, 107–119.CrossRefGoogle Scholar
  29. 29.
    Schuabb, V., Winter, R., & Czeslik, C. (2016). Improved activity of chymotrypsin on silica particles – a high-pressure stopped-flow study. Biophysical Chemistry, 218, 1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Efremova, M. V., Veselov, M. M., Barulin, A. V., Gribanovsky, S. L., Le-Deygen, I. M., Uporov, I. V., Kudryashova, E. V., Sokolsky-Papkov, M., Majouga, A. G., Golovin, Y. I., Kabanov, A. V., & Klyachkoin, N. L. (2018). Situ observation of chymotrypsin catalytic activity change actuated by nonheating low- frequency magnetic field. ACS Nano, 12(4), 3190–3199.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Bahamondes, C., & Illanes, A. (2018). Effect of internal diffusional restrictions on the selectivity of chymotrypsin in a series-parallel reaction of peptide synthesis. Process Biochemistry, 68, 117–120.CrossRefGoogle Scholar
  32. 32.
    Weltz, J. S., Kienle, D. F., Schwartz, D. K., & Kaa, J. L. (2019). Dramatic increase in catalytic performance of immobilized lipases by their stabilization on polymer brush supports. ACS Catalysis, 9, 4992–5001.CrossRefGoogle Scholar
  33. 33.
    Hedstrom, L., Farr-Jones, S., Kettner, C. A., & Rutter, W. J. (1994). Converting trypsin to chymotrypsin: ground-state binding does not determine substrate specificity. Biochemistry, 33(29), 8764–8769.PubMedCrossRefGoogle Scholar
  34. 34.
    Wong, D. E., Senecal, K. J., & Goddard, J. M. (2017). Immobilization of chymotrypsin on hierarchical nylon 6,6 nanofiber improves enzyme performance. Colloids and Surfaces, B: Biointerfaces, 154, 270–278.PubMedCrossRefGoogle Scholar
  35. 35.
    Lee, B., Kim, B. C., Chang, M. S., Kim, H. S., Na, H. B., Park, Y. I., Lee, J., Hyeon, T., Lee, H., Lee, S.-W., & Kim, J. (2016). Efficient protein digestion using highly-stable and reproducible trypsin coatings on magnetic nanofibers. Chemical Engineering Journal, 288, 770–777.CrossRefGoogle Scholar
  36. 36.
    Wouters, M. A., Liu, K., Riek, P., & Husain, A. A. (2003). Despecialization step underlying evolution of a family of serine proteases. Molecular Cell, 12(2), 343–354.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Plyushchenko, A. V., Borovikova, L. N., & Pisarev, O. A. (2018). Proteolytic activity of chymotrypsin immobilized on selenium nanoparticles. Applied Biochemistry and Microbiolology, 54, 375–378.CrossRefGoogle Scholar
  38. 38.
    Bahamondes, C., Alvaro, G., Wilson, L., & Illanes, A. (2017). Effect of enzyme load and catalyst particle size on the diffusional restrictions in reactions of synthesis and hydrolysis catalyzed by chymotrypsin immobilized into glyoxal-agarose. Process Biochemistry, 53, 172–179.CrossRefGoogle Scholar
  39. 39.
    Li, D. -F., Ding, H. -C., & Zhou, T. (2013). Covalent, immobilization of mixed proteases, trypsin and, chymotrypsin onto modified polyvinyl chloride microspheres. Journal of Agricultural and Food Chemistry, 61, 10447–10453.Google Scholar
  40. 40.
    Faure, N. E., Halling, P. J., & Wimperis, S. (2014). A solid-state NMR study of the immobilization of chymotrypsin on mesoporous silica. Journal of Physical Chemistry C, 118, 1042–1048.CrossRefGoogle Scholar
  41. 41.
    Adriano, W. S., Mendonca, D. B., Rodrigues, D. S., Mammarella, E. J., & Giordano, R. L. C. (2008). Improving the properties of chitosan as support for the covalent multipoint of immobilization chymotrypsin. Biomacromolecules, 9(8), 2170–2179.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Meller, K., Pomastowski, P., Grzywinski, D., Szumski, M., & Buszewski, B. (2016). Preparation and evaluation of dual-enzyme micro-reactor with co-immobilized trypsin and chymotrypsin. Journal of Chromatography A, 1440, 45–54.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Bayramoglu, G., & Arica, M. Y. (2014). Activity and stability of urease entrapped in thermosensitive p(isopropylacrylamide-co-poly(ethyleneglycol)-methacrylate) hydrogel. Bioprocess and Biosystems Engineering, 37(2), 235–243.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Wang, D., Ding, W., Zhou, K., Guo, S., Zhang, Q., & Haddleton, D. M. (2018). Coating titania nanoparticles with epoxy-containing catechol polymers via Cu(0)-living radical polymerization as intelligent enzyme carriers. Biomacromolecules, 19(7), 2979–2990.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Cloete, W. J., Hayward, S., Swart, P., & Klumperman, B. (2019). Degradation of proteins and starch by combined immobilization of protease, amylase and galactosidase on a single electrospun nanofibrous membrane. Molecules, 24, 508.PubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chan, Y. W., Acquah, C., Obeng, E. M., Dullah, E. C., Jeevanandam, J., & Ongkudon, C. M. (2019). Parametric study of immobilized cellulase-polymethacrylate particle for the hydrolysis of carboxymethyl cellulose. Biochimie, 157, 204–212.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Gabriele, F., Spreti, N., Del Giacco, T., Germani, R., & Tiecco, M. (2018). Effect of surfactant structure on the super activity of Candida rugosa lipase. Langmuir, 34(38), 11510–11517.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Li, L., Dyer, P. W., & Greenwell, H. C. (2018). Biodiesel production via trans-esterification using pseudomonas cepacia immobilized on cellulosic polyurethane. ACS Omega, 3(6), 6804–6811.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Arica, M. Y., & Bayramoglu, G. (2004). Polyethyleneimine-grafted poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) membranes for reversible glucose oxidase immobilization. Biochemical Engineering Journal, 20, 73–77.CrossRefGoogle Scholar
  51. 51.
    Zhao, J., Yu, C. -L., Fang, W., Lin, J. -D., Chen, G., & Wang, X. -Q. (2019). Spectroscopic and mechanistic analysis of the interaction between jack bean urease and polypseudorotaxane fabricated with bis-thiolated poly(ethylene glycol) and cyclodextrin. Colloid and Surfaces B, 176, 276–287.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biochemical Processing and Biomaterial Research LaboratoryGazi UniversityAnkaraTurkey
  2. 2.Department of ChemistryGazi UniversityAnkaraTurkey
  3. 3.Department of ChemistryHacettepe UniversityAnkaraTurkey

Personalised recommendations