Advertisement

Solid-state Co-cultivation of Bacillus subtilis, Bacillus mucilaginosus, and Paecilomyces lilacinus Using Tobacco Waste Residue

  • Jian-Ying Dai
  • Yu Yang
  • Yue-Sheng Dong
  • Zhi-Long XiuEmail author
Article
  • 6 Downloads

Abstract

Agro-industrial wastes are excellent sources for solid-state culture to produce spores of microorganisms, whereas microbial co-cultivation is not fully exploited in solid-state culture. In this work, the co-cultivation of different strains of Bacillus subtilis, and three microbes of B. subtilis, Bacillus mucilaginosus, and Paecilomyces lilacinus was studied using a solid medium only composed of water and tobacco waste residue after extraction of nicotine and solanesol. The influences of matrix thickness, moister, temperature, and ratio of three microbes in seed on the cell growth and spore formation were studied. The maximum viable cells and spores of each microbe reached 1013 cfu/g when cultured alone at 30 °C in a medium containing 58.3% moisture. Co-cultivation of microbes stimulated cell growth and maximum viable cells of each microbe reached 1014 cfu/g, while spore production was inhibited and decreased to 1011 cfu/g. With decreasing amount of P. lilacinus in seed, total amount of spores was increased. When the seed with a ratio of 6:3:1 for B. mucilaginosus, B. subtilis, and P. lilacinus was inoculated, the total amount of spores reached 4.14 × 1012 cfu/g and the ratio was 1.7:0.7:1. These results indicate the potential of solid-state cultivation in the high production of spores from tobacco waste residue at low cost.

Keywords

Bacillus mucilaginosus Bacillus subtilis Paecilomyces lilacinus Solid-state co-culture Tobacco waste 

Notes

Acknowledgments

Many thanks for the help of Prof. Qiao Su and her graduate student Yue Pan in the plant experiment.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Liu, Y., Dong, J. X., Liu, G. J., Yang, H. N., Liu, W., Wang, L., Kong, C. X., Zheng, D., Yang, J. G., Deng, L. W., & Wang, S. S. (2015). Co-digestion of tobacco waste with different agricultural biomass feedstocks and the inhibition of tobacco viruses by anaerobic digestion. Bioresource Technology, 189, 210–216.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Yan, B. C., Zhang, S. P., Chen, W. B., & Cai, Q. J. (2018). Pyrolysis of tobacco wastes for bio-oil with aroma compounds. Journal of Analytical and Applied Pyrolysis, 136, 248–254.CrossRefGoogle Scholar
  3. 3.
    Wu, W. X., Mei, Y. F., Zhang, L., Liu, R. H., & Cai, J. M. (2015). Kinetics and reaction chemistry of pyrolysis and combustion of tobacco waste. Fuel, 156, 71–80.CrossRefGoogle Scholar
  4. 4.
    Ye, X., Liu, H., Meng, Q., Chen, S., Hu, Z., Sun, S., Ma, J., & Yu, X. (2013). Comparison of chemical composition in stalks of different tobaccos. Tobacco Science & Technology (in Chinese), (10), 76–79.Google Scholar
  5. 5.
    Nugroho, L. H., & Verpoorte, R. (2002). Secondary metabolism in tobacco. Plant Cell, Tissue and Organ Culture, 68(2), 105–125.CrossRefGoogle Scholar
  6. 6.
    Jing, Y. Q., Gao, Y. Z., Wang, W. F., Cheng, Y. Y., Lu, P., Ma, C., & Zhang, Y. H. (2016). Optimization of the extraction of polysaccharides from tobacco waste and their biological activities. International Journal of Biological Macromolecules, 91, 188–197.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Buntic, A. V., Stajkovic-Srbinovic, O. S., Delic, D. I., Dimitrijevic-Brankovic, S. I., & Milic, M. D. (2019). The production of cellulase from the waste tobacco residues remaining after polyphenols and nicotine extraction and bacterial pre-treatment. Journal of the Serbian Chemical Society, 84(2), 129–140.CrossRefGoogle Scholar
  8. 8.
    Wang, Y., & Gu, W. B. (2018). Study on supercritical fluid extraction of solanesol from industrial tobacco waste. Journal of Supercritical Fluids, 138, 228–237.CrossRefGoogle Scholar
  9. 9.
    Yan, N., Du, Y. M., Liu, X. M., Zhang, H. B., Liu, Y. H., & Zhang, Z. F. (2019). A review on bioactivities of tobacco cembranoid diterpenes. Biomolecules, 9(1), 30.PubMedCentralCrossRefGoogle Scholar
  10. 10.
    Mumba, P. P., & Phiri, R. (2008). Environmental impact assessment of tobacco waste disposal. International Journal of Environmental Research, 2, 225–230.Google Scholar
  11. 11.
    Ye, J. B., Zheng, S. S., Zhang, Z., Yang, F., Ma, K., Feng, Y. J., Zheng, J. Q., Mao, D. B., & Yang, X. P. (2019). Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresource Technology, 274, 518–524.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Chaturvedi, S., Upreti, D. K., Tandon, D. K., Sharma, A., & Dixit, A. (2008). Bio-waste from tobacco industry as tailored organic fertilizer for improving yields and nutritional values of tomato crop. Journal of Environmental Biology, 29(5), 759–763.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Tangkoonboribun, R., & Sassanarakkit, S. (2009). Molluscicide from tobacco waste. Journal of Agricultural Science, 1, 76–81.CrossRefGoogle Scholar
  14. 14.
    Nota, G., Naviglio, D., Ugliano, M., & Romano, R. (2000). Determination of nicotine in the soil mixed with tobacco powder as fertilizer. Analytical Letters, 33(2), 265–275.CrossRefGoogle Scholar
  15. 15.
    Hu, R. S., Wang, J., Li, H., Ni, H., Chen, Y. F., Zhang, Y. W., Xiang, S. P., & Li, H. H. (2015). Simultaneous extraction of nicotine and solanesol from waste tobacco materials by the column chromatographic extraction method and their separation and purification. Separation and Purification Technology, 146, 1–7.CrossRefGoogle Scholar
  16. 16.
    Wang, L., Yang, F., Yaoyao, E., Yuan, J., Raza, W., Huang, Q. W., & Shen, Q. R. (2016). Long-term pplication of bioorganic fertilizers improved soil biochemical properties and microbial communities of an apple orchard soil. Frontiers in Microbiology, 7, 1893.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu, L. J., Sun, C. L., Liu, S. R., Chai, R. S., Huang, W. Q., Liu, X. X., Tang, C. X., & Zhang, Y. S. (2015). Bioorganic fertilizer enhances soil suppressive capacity against bacterial wilt of tomato. Plos One, 10(4), e0121304.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Fu, L., Ruan, Y. Z., Tao, C. Y., Li, R., & Shen, Q. R. (2016). Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression. Scientific Reports, 6(1), 27731.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zhang, H., Liu, Y., & Wang, G. (2019). Integrated use of maize bran residue for one-step phosphate bio-fertilizer production. Applied Biochemistry and Biotechnology, 187(4), 1475–1487.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Pishchik, V. N., Vorobyov, N. I., Walsh, O. S., Surin, V. G., & Khomyakov, Y. V. (2016). Estimation of synergistic effect of humic fertilizer and Bacillus subtilis on lettuce plants by reflectance measurements. Journal of Plant Nutrition, 39(8), 1074–1086.CrossRefGoogle Scholar
  21. 21.
    Li, X., Wu, Z. Q., Li, W. D., Yan, R. X., Li, L., Li, J., Li, Y. H., & Li, M. G. (2007). Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting. Applied Microbiology and Biotechnology, 74(5), 1120–1125.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Zhang, Y.-y., Cai, Y., Wang, C.-q., Zeng, Q.-b., & Pan, X.-b. (2015). Effect of Bacillus mucilaginosus fertilizer on growth and nutrients absorption of two tobacco seedlings in seedbed. Chinese Journal of Soil Science, 46, 676–681.Google Scholar
  23. 23.
    Shi, H., Sun, L., Tan, J., Zhao, X., & Wang, R. (2018). Control efficiency of bio-organic fertilizers on tobacco bacterial wilt and their effects on soil bacterial community. Tobacco Science & Technology (in Chinese), 39, 54–62.Google Scholar
  24. 24.
    Zhang, N., Wu, K., He, X., Li, S. Q., Zhang, Z. H., Shen, B. A., Yang, X. M., Zhang, R. F., Huang, Q. W., & Shen, Q. R. (2011). A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant and Soil, 344(1-2), 87–97.CrossRefGoogle Scholar
  25. 25.
    Ji, X. L., Lu, G. B., Gai, Y. P., Zheng, C. C., & Mu, Z. M. (2008). Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiology Ecology, 65(3), 565–573.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Chen, Y., Yan, F., Liu, H., Chai, Y., & Guo, J. (2012). Biofilm formation of Bacillus subtilis on tomato roots enhances biocontrol efficacy against tomato bacterial wilt disease caused by Ralstonia solanacearum. Phytopathology, 102, 21–22.CrossRefGoogle Scholar
  27. 27.
    Liu, H. X., Li, S. M., Luo, Y. M., Luo, L. X., Li, J. Q., & Guo, J. H. (2014). Biological control of Ralstonia wilt, Phytophthora blight, Meloidogyne root-knot on bell pepper by the combination of Bacillus subtilis AR12, Bacillus subtilis SM21 and Chryseobacterium sp R89. European Journal of Plant Pathology, 139, 107–116.CrossRefGoogle Scholar
  28. 28.
    Nesha, R., & Siddiqui, Z. A. (2017). Effects of Paecilomyces lilacinus and Aspergillus niger alone and in combination on the growth, chlorophyll contents and soft rot disease complex of carrot. Scientia Horticulturae, 218, 258–264.CrossRefGoogle Scholar
  29. 29.
    Yu, Z., Zhang, Y. C., Zhang, X., & Wang, Y. (2015). Conversion of food waste into biofertilizer for the biocontrol of root knot nematode by Paecilomyces lilacinus. Environmental Technology, 36(24), 3148–3158.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hu, X., Zhou, S., He, Y., Liao, M., Chen, Y., & Chen, Z. (2018). Growth promoting function and application of Paecilomyces lilacinus in tobacco production. Southwest China Journal of  Agricultural Sciences, 31, 973–979.Google Scholar
  31. 31.
    Yu, Z., Zhang, Y. C., Luo, W. S., & Wang, Y. (2015). Root colonization and effect of biocontrol fungus Paecilomyces lilacinus on composition of ammonia-oxidizing bacteria, ammonia-oxidizing archaea and fungal populations of tomato rhizosphere. Biology and Fertility of Soils, 51(3), 343–351.CrossRefGoogle Scholar
  32. 32.
    Nosratabad, A. R. F., Etesami, H., & Shariati, S. (2017). Integrated use of organic fertilizer and bacterial inoculant improves phosphorus use efficiency in wheat (Triticum aestivum L.) fertilized with triple superphosphate. Rhizosphere, 3, 109–111.CrossRefGoogle Scholar
  33. 33.
    Stamford, N. P., Felix, F., Oliveira, W., Silva, E., Carolina, S., Arnaud, T., & Freitas, A. D. (2019). Interactive effectiveness of microbial fertilizer enriched in N on lettuce growth and on characteristics of an Ultisol of the rainforest region. Scientia Horticulturae, 247, 242–246.CrossRefGoogle Scholar
  34. 34.
    Vassilev, N., Vassileva, M., Lopez, A., Martos, V., Reyes, A., Maksimovic, I., Eichler-Lobermann, B., & Malusa, E. (2015). Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Applied Microbiology and Biotechnology, 99(12), 4983–4996.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Pachapur, V. L., Sarma, S. J., Brar, S. K., Le Bihan, Y., Soccol, C. R., Buelna, G., & Verma, M. (2015). Co-culture strategies for increased biohydrogen production. International Journal of Energy Research, 39(11), 1479–1504.CrossRefGoogle Scholar
  36. 36.
    Dong, Y. S., Wang, Y., Li, Y., Xiu, Z. L., & Dai, J. Y. (2018). Method for performing comprehensive utilization of waste tobacco leaves. Chinese Patent CN108689803-A.Google Scholar
  37. 37.
    Dai, J. Y., Wang, Z. F., & Xiu, Z. L. (2019). High production of optically pure (3R)-acetoin by a newly isolated marine strain of Bacillus subtilis CGMCC 13141. Bioprocess and Biosystems Engineering, 42(3), 475–483.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Posada-Uribe, L. F., Romero-Tabarez, M., & Villegas-Escobar, V. (2015). Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production. Bioprocess and Biosystems Engineering, 38(10), 1879–1888.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Zhang, C., Wu, D. J., Jia, J., & Yang, H. Q. (2019). Fishmeal wastewater as a low-cost nitrogen source for g-polyglutamic acid production using Bacillus subtilis. Waste and Biomass Valorization, 10(4), 789–795.CrossRefGoogle Scholar
  40. 40.
    Chen, Z. M., Li, Q., Liu, H. M., Yu, N., Xie, T. J., Yang, M. Y., Shen, P., & Chen, X. D. (2010). Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs. Applied Microbiology and Biotechnology, 85(5), 1353–1360.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wang, Y., Ma, L., Lv, X., Zhao, D., & Huang, Z. (2015). Effects of single and mixed culture solid state germentation on main chemical components in cigarette blend. Tobacco Science & Technology (in Chinese), 48, 47–52.Google Scholar
  42. 42.
    Pryor, S. W., Gibson, D. M., Hay, A. G., Gossett, J. M., & Walker, L. P. (2007). Optimization of spore and antifungal lipopeptide production during the solid-state fermentation of Bacillus subtilis. Applied Biochemistry and Biotechnology, 143(1), 63–79.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Berikashvili, V., Sokhadze, K., Kachlishvili, E., Elisashvili, V., & Chikindas, M. L. (2018). Bacillus amyloliquefaciens spore production under solid-state fermentation of lignocellulosic residues. Probiotics and Antimicrobial Proteins, 10(4), 755–761.Google Scholar
  44. 44.
    Vigueras, G., Shirai, K., Hernandez-Guerrero, M., Morales, M., & Revah, S. (2014). Growth of the fungus Paecilomyces lilacinus with n-hexadecane in submerged and solid-state cultures and recovery of hydrophobin proteins. Process Biochemistry, 49(10), 1606–1611.CrossRefGoogle Scholar
  45. 45.
    Tian, J., Sun, C., Lu, P.-P., Ma, Y., Ke, Y., Li, B., & Yang, M.-Y. (2014). Studies on identification and solid fermentation of a strain Bacillus mucilaginosus YA-07. Journal of Agricultural Science and Technology (in Chinese), 16, 67–77.Google Scholar
  46. 46.
    Robl, D., Sung, L. B., Novakovich, J. H., Marangoni, P. R. D., Zawadneak, M. A. C., Dalzoto, P. R., Gabardo, J., & Pimentel, I. C. (2009). Spore production in Paecilomyces lilacinus (Thom.) Samson strains on agro-industrial residues. Brazilian Journal of Microbiology, 40(2), 296–300.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Parate, R., Mane, R., Dharne, M., & Rode, C. (2018). Mixed bacterial culture mediated direct conversion of bio-glycerol to diols. Bioresource Technology, 250, 86–93.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Jiang, L. L., Liu, H. F., Mu, Y., Sun, Y. Q., & Xiu, Z. L. (2017). High tolerance to glycerol and high production of 1,3-propanediol in batch fermentations by microbial consortium from marine sludge. Engineering in Life Sciences, 17(6), 635–644.CrossRefGoogle Scholar
  49. 49.
    Ola, A. R. B., Thomy, D., Lai, D., Brotz-Oesterhelt, H., & Prolcsch, P. (2013). Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. Journal of Natural Products, 76(11), 2094–2099.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Shao, H., Xia, T. T., Wu, D. L., Chen, F. J., & Mi, G. H. (2018). Root growth and root system architecture of field-grown maize in response to high planting density. Plant and Soil, 430(1-2), 395–411.CrossRefGoogle Scholar
  51. 51.
    Ning, P., Li, S., Li, X. X., & Li, C. J. (2014). New maize hybrids had larger and deeper post-silking root than old ones. Field Crops Research, 166, 66–71.CrossRefGoogle Scholar
  52. 52.
    Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., Inoue, H., Takehisa, H., Motoyama, R., Nagamura, Y., Wu, J. Z., Matsumoto, T., Takai, T., Okuno, K., & Yano, M. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9), 1097–1102.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Stamenković, S., Beškoski, V., Karabegović, I., Lazić, M., & Nikolić, N. (2018). Microbial fertilizers: a comprehensive review of current findings and future perspectives. Spanish Journal of Agricultural Research, 16(1), e09R01.CrossRefGoogle Scholar
  54. 54.
    Etesami, H., Emami, S., & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB): mechanisms, promotion of plant growth, and future prospects - a review. Journal of Soil Science and Plant Nutrition, 17(4), 897–911.CrossRefGoogle Scholar
  55. 55.
    Mumtaz, M. Z., Ahmad, M., Jamil, M., & Hussain, T. (2017). Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiological Research, 202, 51–60.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kavamura, V. N., Santos, S. N., da Silva, J. L., Parma, M. M., Avila, L. A., Visconti, A., Zucchi, T. D., Taketani, R. G., Andreote, F. D., & de Melo, I. S. (2013). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research, 168(4), 183–191.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jian-Ying Dai
    • 1
  • Yu Yang
    • 1
  • Yue-Sheng Dong
    • 1
  • Zhi-Long Xiu
    • 1
    Email author
  1. 1.School of BioengineeringDalian University of TechnologyDalianP. R. China

Personalised recommendations