Advertisement

Corn Straw Residue: a Strategy for Lipase Immobilization

  • Renata Deda Mendonca FerreiraEmail author
  • Rodrigo Brackmann
  • Ernandes Benedito Pereira
  • Raquel Dalla Costa da Rocha
Article
  • 10 Downloads

Abstract

This work aims to study the immobilization of Candida rugosa lipase (CRL) onto corn straw residue. For this purpose, chemical, morphological, and textural characteristics of the corn straw; immobilization process by adsorption; and immobilized enzyme activity and storage stability were evaluated. The corn straw presented isoelectric point of 7.0, surface with hydroxyl bands being favorable to the immobilization process. An irregular surface was also observed with fibers and pores, which are mesoporous and macroporous, characteristics that demonstrate efficiency in mass transfer mechanisms. Upon immobilization, it was observed that adsorption velocity is proportional to the square of the available adsorption sites (pseudo-second-order), and that the immobilization occurs in monolayers (Langmuir isotherm). The adsorption process was favorable and considered as a chemical adsorption mechanism. After immobilization, the optimum temperature increased, the optimum pH reduced, and the affinity of the biocatalyst for the substrate decreased. Corn straw derivative demonstrated good thermal stability. Regarding storage stability, there was approximately 12% loss of activity after 60 days of storage at 4 °C. Considering that no treatment was applied to the corn straw, this result is satisfactory and shows good affinity between this support and CRL.

Keywords

Candida rugosa Enzyme Adsorption Stability Activity 

Notes

Acknowledgments

The authors are grateful to UFPR-Palotina for the surface and pore size analyses.

Funding Information

This paper was financially supported by CAPES.

Compliance with Ethical Standards

There is no research involving human participants and/or animals.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Aarathy, M., Saravanan, P., Gowthaman, M. K., Rose, C., & Kamini, N. R. (2014). Enzymatic transesterification for production of biodiesel using yeast lipases: An overview. Chemical Engineering Research and Design, 92(8), 1591–1601.CrossRefGoogle Scholar
  2. 2.
    Katchalski-Katzir, E., & Kraemer, D. M. (2000). Eupergit® C, a carrier for immobilization of enzymes of industrial potential. Journal of Molecular Catalysis B: Enzymatic, 10(1-3), 157–176.CrossRefGoogle Scholar
  3. 3.
    Reguly, J. C. (2000). Biotecnologia dos Processos Fermentativos (1st ed.). Recife: Universitário.Google Scholar
  4. 4.
    Mendes, A. A., Giordano, R. C., Giordano, R. L. C., & Castro, H. F. (2011). Immobilization and stabilization of microbial lipases by multipoint covalent attachment on aldehyde-resin affinity: Application of the biocatalysts in biodiesel synthesis. Journal of Molecular Catalysis B: Enzymatic, 68(1), 109–115.CrossRefGoogle Scholar
  5. 5.
    Costa-Silva, T. A., Carvalho, A. K. F., Souza, C. R. F., De Castro, H. F., Said, S., & Oliveira, W. P. (2016). Enzymatic Synthesis of Biodiesel Using Immobilized Lipase on a Non-commercial Support. Energy & Fuels, 30(6), 4820–4824.CrossRefGoogle Scholar
  6. 6.
    Lv, J., Liu, X., Yuan, X., Deng, Y., Wu, Z., Wang, Y., Fan, M., & Xu, H. (2013). Preparation and properties of adsorption material from corn stalks core when used for enzyme immobilization and the subsequent activities of the adsorbed enzymes. Industrial Crops and Products, 50, 787–796.CrossRefGoogle Scholar
  7. 7.
    Regalbuto, J. R., & Robles, J. (2004). Final report - Summer Program. Chicago: University of Illinois.Google Scholar
  8. 8.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.CrossRefGoogle Scholar
  9. 9.
    Yener, J., Kopac, T., Dogu, G., & Dogu, T. (2006). Adsorption of Basic Yellow 28 from aqueous solutions with clinoptilolite and amberlite. Journal of Colloid and Interface Science, 294(2), 255–264.CrossRefGoogle Scholar
  10. 10.
    Blanchard, G., Maunaye, M., & Martim, G. (1984). Removal of heavy metals from waters by means of natural zeolites. Water Research, 18(12), 1501–1507.CrossRefGoogle Scholar
  11. 11.
    Langmuir, I. (1916). Journal of the American Chemical Society, 252, 2221–2295.CrossRefGoogle Scholar
  12. 12.
    Freundlich, H. (1909). Kolloid-Zeitschrift (Vol. 3, pp. 212–220).Google Scholar
  13. 13.
    HAN, R., Zhang, J., Zou, W., Shi, J., & Liu, H. (2005). Equilibrium biosorption isotherm for lead ion on chaff. Journal of Hazardous Materials, 125(1-3), 266–271.CrossRefGoogle Scholar
  14. 14.
    Bon, E. P. S., Ferrara, M. A., & Corvo, M. L. (2008). Enzimas em biotecnologia: produção, aplicações e mercado (1st ed.). Rio de Janeiro: Interciência.Google Scholar
  15. 15.
    Soares, C. M. F., De Castro, H. F., De Moraes, F. F., & Zanin, G. M. (1999). Biotechnology and Applied Biochemistry, 77, 745–757.CrossRefGoogle Scholar
  16. 16.
    Milhomem, K. P. (2018). Ms thesis. Catalão: Universidade Federal de Goiás.Google Scholar
  17. 17.
    Zivkovic, L. T. I., Zivkovic, L. S., Babic, B. M., Kokunesoski, M. J., Jokic, B. M., & Karadzic, I. M. (2015). Immobilization of Candida rugosa lipase by adsorption onto biosafe meso/macroporous silica and zirconia. Biochemical Engineering Journal, 93, 73–83.CrossRefGoogle Scholar
  18. 18.
    Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2010). Introdução à espectroscopia (2nd ed.). São Paulo: Cengage Learning.Google Scholar
  19. 19.
    Wen, J. L., Sun, Z. J., Sun, Y. C., Sun, S. N., Xu, F., & Sun, R. C. (2010). Structural Characterization of Alkali-Extractable Lignin Fractions from Bamboo. Journal of Biobased Materials and Bioenergy, 4(4), 408–425.CrossRefGoogle Scholar
  20. 20.
    IUPAC. (1976). Pure and Applied Chemistry, 46, 71–90.CrossRefGoogle Scholar
  21. 21.
    Schmal, M. (2011). Cinética e reatores: aplicação na Engenharia Química (1st ed.). Rio de Janeiro: Synergia.Google Scholar
  22. 22.
    Maron, S. H., & Prutton, C. F. (2005). Fundamentos de Fisico-química (1st ed.). México: Limusa.Google Scholar
  23. 23.
    Castellan, G. W. (1986). Fundamentos de físico-química, 1st ed. Rio de Janeiro: LTC.Google Scholar
  24. 24.
    Fogler, H. S. (2009). Elementos de engenharia das reações químicas (4th ed.). Rio de Janeiro: LTC.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemical DepartmentFederal Technological University of Paraná, campus Pato BrancoPato BrancoBrazil
  2. 2.College of Pharmaceutical ScienceFederal University of AlfenasAlfenasBrazil

Personalised recommendations