Inactivation Mechanism of 1-Ethyl-3-Methylimidazolium-Based Ionic Liquid on β-Glucosidase Produced by Paenibacillus sp. LLZ1 and Enhanced Activity Using a Surfactant

  • Hang Liu
  • Min Zhou
  • Xin Ju
  • Hang Shu
  • Cuiying Hu
  • Liangzhi LiEmail author


β-Glucosidase (BG) hydrolyzes cellobiose into glucose, and is a vital step in converting ionic liquids (ILs)-pretreated biomass to sustainable biofuels. The inactivation mechanism of BG from Paenibacillus sp. LLZ1 induced by microcrystalline cellulose was explored in various concentrations of ILs, composed of [Emim]+ cation and [DEP], [OAc], [Br], [Cl], and [BF4] anions. The FTIR analysis of inactivated BG indicated that the ILs altered its β-sheet content. Moreover, circular dichroism spectroscopy (CD) suggested that the α-helix content decreased, while the β-sheet content increased with the presence of ILs in general. Interestingly, the secondary structure of BG had almost no change after [Emim]DEP treatment, while ionic liquid [Emim]BF4 treatment caused the irreversible denaturation of BG. Eventually, by adding 0.4 mM of Aerosol OT surfactant, the BG activity was increased by 20.1% in the presence of 25% [Emim]DEP, and the corresponding glucose yield from hydrolysis of cellobiose was increased by 23.9%.


Cellulose β-Glucosidase Inactivation Paenibacillus sp. LLZ1 Ionic liquid Secondary structure 


Funding Information

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant No. 21676173 and Grant No. 21376156). This study was also supported by the Qing Lan Project of Jiangsu Education Department. The authors are grateful for the financial support from the agricultural infrastructure project of Suzhou Science and Technology Development Plan (SNG2018046).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ling, Z., Chen, S., Zhang, X., Takabe, K., & Xu, F. (2017). Unraveling variations of crystalline cellulose induced by ionic liquid and their effects on enzymatic hydrolysis. Scientific Reports, 7(1), 1–11.CrossRefGoogle Scholar
  2. 2.
    Wang, Y., Yu, W., & Han, F. (2016). Expression and characterization of a cold-adapted, thermotolerant and denaturant-stable GH5 endoglucanase Celal_2753 that withstands boiling from the psychrophilic bacterium Cellulophaga algicola IC166T. Biotechnology Letters, 38(2), 285–290.CrossRefGoogle Scholar
  3. 3.
    Zhang, Q., Zhao, M., Xu, Q., Ren, H. R., & Yin, J. Z. (2019). Enhanced enzymatic hydrolysis of sorghum stalk by supercritical carbon dioxide and ultrasonic pretreatment. Applied Biochemistry and Biotechnology, 188(1), 101–111.CrossRefGoogle Scholar
  4. 4.
    Liu, L., Li, Z., Hou, W., & Shen, H. (2018). Direct conversion of lignocellulose to levulinic acid catalyzed by ionic liquid. Carbohydrate Polymers, 181, 778–784.CrossRefGoogle Scholar
  5. 5.
    Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 37(1), 123–150.CrossRefGoogle Scholar
  6. 6.
    Hou, Q. D., Ju, M. T., Li, W. Z., Liu, L., Chen, Y., & Yang, Q. (2017). Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules, 22(490), 1–24.Google Scholar
  7. 7.
    Olivier-Bourbigou, H., Magna, L., & Morvan, D. (2010). Ionic liquids and catalysis: recent progress from knowledge to applications. Applied Catalysis A-General, 373(1-2), 1–56.CrossRefGoogle Scholar
  8. 8.
    Feng, D., Li, L. Z., Fang, Y., Tan, W., Zhao, G., Zou, H., Xian, M., & Zhang, Y. (2011). Separation of ionic liquid [Mmim][DMP] and glucose from enzymatic hydrolysis mixture of cellulose using alumina column chromatography. Applied Microbiology and Biotechnology, 91(2), 399–405.CrossRefGoogle Scholar
  9. 9.
    Zanphorlin, L. M., de Giuseppe, P. O., Honorato, R. V., Tonoli, C. C., Fattori, J., Crespim, E., de Oliveira, P. S., Ruller, R., & Murakami, M. T. (2016). Oligomerization as a strategy for cold adaptation: structure and dynamics of the GH1 beta-glucosidase from Exiguobacterium antarcticum B7. Scientific Reports, 6, 1–14.CrossRefGoogle Scholar
  10. 10.
    Salgado, J. C. S., Meleiro, L. P., Carli, S., & Ward, R. J. (2018). Glucose tolerant and glucose stimulated β-glucosidases – a review. Bioresource Technology, 267, 704–713.CrossRefGoogle Scholar
  11. 11.
    Dong, W. L., Xue, M. L., Zhang, Y., Xin, F. X., Wei, C., Zhang, W. M., Wu, H., Ma, J. F., & Jiang, M. (2017). Characterization of a beta-glucosidase from Paenibacillus species and its application for succinic acid production from sugarcane bagasse hydrolysate. Bioresource Technology, 241, 309–316.CrossRefGoogle Scholar
  12. 12.
    Ichikawa, S., Ichihara, M., Ito, T., Isozaki, K., Kosugi, A., & Karita, S. (2018). Glucose production from cellulose through biological simultaneous enzyme production and saccharification using recombinant bacteria expressing the β-glucosidase gene. Journal of Bioscience and Bioengineering, 1–5.Google Scholar
  13. 13.
    Amaike Campen, S., Lynn, J., Sibert, S. J., Srikrishnan, S., Phatale, P., Feldman, T., Guenther, J. M., Hiras, J., Tran, Y. T. A., Singer, S. W., Adams, P. D., Sale, K. L., Simmons, B. A., Baker, S. E., Magnuson, J. K., & Gladden, J. M. (2017). Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger. PloS One, 12(12), 1–15.CrossRefGoogle Scholar
  14. 14.
    Goswami, S., Gupta, N., & Datta, S. (2016). Using the beta-glucosidase catalyzed reaction product glucose to improve the ionic liquid tolerance of beta-glucosidases. Biotechnol Biofuels, 9(1), 72.CrossRefGoogle Scholar
  15. 15.
    Sun, X., Zhu, L., Wang, J., Wang, J., Su, B., Liu, T., Zhang, C., Gao, C., & Shao, Y. (2017). Toxic effects of ionic liquid 1-octyl-3-methylimidazolium tetrafluoroborate on soil enzyme activity and soil microbial community diversity. Ecotoxicology and Environmental Safety, 135, 201–208.CrossRefGoogle Scholar
  16. 16.
    Fernandez-Lorente, G., Cabrera, Z., Godoy, C., Fernandez-Lafuente, R., Palomo, J. M., & Guisan, J. M. (2008). Interfacially activated lipases against hydrophobic supports: effect of the support nature on the biocatalytic properties. Process Biochemistry, 43(10), 1061–1067.CrossRefGoogle Scholar
  17. 17.
    Abuin, E., Lissi, E., & Duarte, R. (2005). Kinetics of N-glutaryl-L-phenylalanine p-nitroanilide hydrolysis catalyzed by α-chymotrypsin in aqueous solutions of dodecyltrimethylammonium bromide. Journal of Colloid & Interface Science, 283(2), 539–543.CrossRefGoogle Scholar
  18. 18.
    Azimi, M., Nafissi-Varcheh, N., Mogharabi, M., Faramarzi, M. A., & Aboofazeli, R. (2016). Study of laccase activity and stability in the presence of ionic and non-ionic surfactants and the bioconversion of indole in laccase-TX-100 system. Journal of Molecular Catalysis B: Enzymatic, 126, 69–75.CrossRefGoogle Scholar
  19. 19.
    Fan, L. L., Xie, P. J., Wang, Y., Huang, Z. S., & Zhou, J. Z. (2018). Biosurfactant-protein interaction: influences of mannosylerythritol lipids-A on beta-glucosidase. Journal of Agricultural and Food Chemistry, 66(1), 238–246.CrossRefGoogle Scholar
  20. 20.
    Hu, D. X., Xiao, L., Li, L. Z., Zhong, C., Ju, X., Yan, L. S., Wu, T. Y., Qing, M., & Hu, Z. Y. (2016). Effects of ionic liquid 1-ethyl-3-methylimidazolium diethylphosphate on cellulase produced by Paenibacillus sp. LLZ1. ACS Sustainable Chemistry & Engineering, 4(9), 4922–4926.CrossRefGoogle Scholar
  21. 21.
    Hu, D. X., Ju, X., Li, L. Z., Hu, C. Y., Yan, L. S., Wu, T. Y., Fu, J. L., & Qin, M. (2016). Improved in situ saccharification of cellulose pretreated by dimethyl sulfoxide/ionic liquid using cellulase from a newly isolated Paenibacillus sp. LLZ1. Bioresource Technology, 201, 8–14.CrossRefGoogle Scholar
  22. 22.
    Bradford, M. M. (1976). A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.CrossRefGoogle Scholar
  23. 23.
    Grosch, J. H., Loderer, C., Jestel, T., Marion, A., & Antje, C. (2015). Carbonyl reductase of Candida parapsilosis – stability analysis and stabilization strategy. Journal of Molecular Catalysis B: Enzymatic, 112, 45–53.CrossRefGoogle Scholar
  24. 24.
    Xu, D. X., Zhang, J. J., Cao, Y. P., Wang, J., & Xiao, J. S. (2016). Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion. Food Science and Technology, 66, 590–597.Google Scholar
  25. 25.
    Fan, L., Wang, S. J., & Li, K. L. (2015). Function of imidazolium-based ionic liquids in system of enzymatic degradation of cellulose. CIESC Journal, 66(1), 121–125.Google Scholar
  26. 26.
    de Eugenio, L. I., Méndez-Líter, J. A., Nieto-Domínguez, M., Alonso, L., Gil-Muñoz, J., Barriuso, J., Prieto, A., & Martínez, M. J. (2017). Differential β-glucosidase expression as a function of carbon source availability in Talaromyces amestolkiae: a genomic and proteomic approach. Biotechnology for Biofuels, 10(1).Google Scholar
  27. 27.
    Behera, K., & Pandey, S. (2009). Interaction between ionic liquid and zwitterionic surfactant: a comparative study of two ionic liquids with different anions. Journal of Colloid and Interface Science, 331(1), 196–205.CrossRefGoogle Scholar
  28. 28.
    Naushad, M., Alothman, Z. A., Khan, A. B., & Ali, M. (2012). Effect of ionic liquid on activity, stability, and structure of enzymes: a review. International Journal of Biological Macromolecules, 51(4), 555–560.CrossRefGoogle Scholar
  29. 29.
    Vidya, P., & Chadha, A. (2009). The role of different anions in ionic liquids on Pseudomonas cepacia lipase catalyzed transesterification and hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 57(1-4), 145–148.CrossRefGoogle Scholar
  30. 30.
    Gruian, C., Vanea, E., Simon, S., & Simon, V. (2012). FTIR and XPS studies of protein adsorption onto functionalized bioactive glass. Biochimica et Biophysica Acta, 1824(1), 873–881.CrossRefGoogle Scholar
  31. 31.
    Yang, Z., Deng, J., & Chen, L. F. (2007). Effect of ionic and non-ionic surfactants on the activity and stability of mushroom tyrosinase. Journal of Molecular Catalysis B: Enzymatic, 47(1-2), 79–85.CrossRefGoogle Scholar
  32. 32.
    Hansted, J. G., Wejse, P. L., Bertelsen, H., & Otzen, D. E. (2011). Effect of protein-surfactant interactions on aggregation of beta-lactoglobulin. Biochimica et Biophysica Acta - Proteins and Proteomics, 1814(5), 713–723.CrossRefGoogle Scholar
  33. 33.
    Li, S., Du, J., Sun, J., Galazka, J. M., Glass, N. L., Cate, J. H., Yang, X., & Zhao, H. (2010). Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a beta-glucosidase in Saccharomyces cerevisiae. Molecular Biosystems, 6(11), 2129–2132.CrossRefGoogle Scholar
  34. 34.
    Wang, M., & Lu, X. (2016). Exploring the synergy between cellobiose dehydrogenase from Phanerochaete chrysosporium and cellulase from Trichoderma reesei. Frontiers in Microbiology, 7, 620.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry, Biology, and Material EngineeringSuzhou University of Science and TechnologySuzhouP. R. China
  2. 2.Emory UniversityOxfordUSA

Personalised recommendations