Advertisement

Characterization of the Furfural and 5-Hydroxymethylfurfural (HMF) Metabolic Pathway in the Novel Isolate Pseudomonas putida ALS1267

  • Jacob Crigler
  • Mark A. Eiteman
  • Elliot AltmanEmail author
Article

Abstract

The genes involved in the aerobic bacterial metabolism of furfural and 5-hydroxymethylfurfural (HMF) have been characterized in two species, Pseudomonas putida Fu1 and Cupriavidus basilensis HMF14. A third furan-metabolizing strain, Pseudomonas putida ALS1267, was recently identified that grows robustly on both furfural and HMF as sole carbon sources, with a growth rate of 0.250 h−1 on furfural and 0.311 h−1 on HMF, and we have characterized the genes involved in furfural and HMF metabolism in this bacterium. Unlike C. basilensis HMF14, which contains separate furfural and HMF operons, P. putida ALS1267 contains one contiguous 18.1-kb operon, which harbors all of the furfural- and HMF-metabolizing genes except for one, the hmfH gene that encodes HMF/furfural oxidoreductase and has both HMF acid oxidase and furfural/HMF dehydrogenase activity. The 18.1-kb operon was cloned into P. putida KT2440, which cannot metabolize furans, enabling growth on furfural as the sole carbon source with a growth rate of 0.340 h−1. The clone did not allow P. putida KT2440 to metabolize HMF, most likely due to the lack of the hmfH gene. No hmfH homolog was identified in P. putida ALS1267, suggesting that another gene in the ALS1267 genome provides this function.

Keywords

Furan Furfural 5-Hydroxymethylfurfural (HMF) Metabolism 

Notes

Acknowledgments

We thank Michael E. Kovach for providing the pBBR1MCS-3 vector and Nancy D. Hanson for providing the pMP220 vector.

Funding Information

This study was funded in part by the Southeastern Sun Grant Center under Prime Award No. DTOS59-07-G-00050.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there are no conflicts of interest.

References

  1. 1.
    Boyer, L. J., Vega, J. L., Klasson, K. T., Clausen, E. C., & Gaddy, J. L. (1992). The effects of furfural on ethanol production by Saccharomyces cerevisiae in batch culture. Biomass and Bioenergy, 3(1), 41–48.Google Scholar
  2. 2.
    Delgenes, J. P., Moletta, R., & Navarro, J. M. (1996). Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme and Microbial Technology, 19(3), 220–225.Google Scholar
  3. 3.
    Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., & Nilvebrant, N. O. (1999). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology, 24(3-4), 151–159.Google Scholar
  4. 4.
    Palmqvist, E., Grage, H., Meinander, N. Q., & Hahn-Haegerdal, B. (1999). Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnology and Bioengineering, 63(1), 46–55.PubMedGoogle Scholar
  5. 5.
    Zaldivar, J., Martinez, A., & Ingram, L. O. (1999). Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnology and Bioengineering, 65(1), 24–33.PubMedGoogle Scholar
  6. 6.
    Zeitsch, K. J. (2000). The chemistry and technology of furfural and its many by-products (Vol. 13). Elsevier.Google Scholar
  7. 7.
    Christian, T. J., Kleiss, B., Yokelson, R. J., Holzinger, R., Crutzen, P. J., Hao, W. M., Saharjo, B. H., & Ward, D. E. (2003). Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels. Journal of Geophysical Research-Atmospheres, 108, D23.Google Scholar
  8. 8.
    Lemieux, P. M., Lutes, C. C., & Santoianni, D. A. (2004). Emissions of organic air toxics from open burning: a comprehensive review. Progress in Energy and Combustion Science, 30(1), 1–32.Google Scholar
  9. 9.
    Banerjee, N., Bhatnagar, R., & Viswanathan, L. (1981). Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. European Journal of Applied Microbiology and Biotechnology, 11(4), 226–228.Google Scholar
  10. 10.
    Modig, T., Liden, G., & Taherzadeh, M. J. (2002). Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. The Biochemical Journal, 363(3), 769–776.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., Liu, Z. L., & Gorsich, S. W. (2010). Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnology for Biofuels, 3(1), 2.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Ask, M., Bettiga, M., Mapelli, V., & Olsson, L. (2013). The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnology for Biofuels, 6(1), 22.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F., & Ingram, L. O. (2001). Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnology Progress, 17(2), 287–293.PubMedGoogle Scholar
  14. 14.
    Lee, J. E., Guragain, Y. N., Bastola, K. P., & Vadlani, P. V. (2017). Innovative methods to generate clean sugar stream from biomass feedstocks for efficient fermentation. Bioprocess and Biosystems Engineering, 40(4), 633–641.PubMedGoogle Scholar
  15. 15.
    Wilson, J. J., Deschatelets, L., & Nishikawa, N. K. (1989). Comparative fermentability of enzymatic and acid hydrolysates of steam-pretreated aspenwood hemicellulose by Pichia stipitis CBS 5776. Applied Microbiology and Biotechnology, 31, 592–596.Google Scholar
  16. 16.
    López, M. J., Nichols, N. N., Dien, B. S., Moreno, J., & Bothast, R. J. (2004). Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Applied Microbiology and Biotechnology, 64(1), 125–131.PubMedGoogle Scholar
  17. 17.
    Pienkos, P. T., & Zhang, M. (2009). Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose., 16(4), 743–762.Google Scholar
  18. 18.
    Cao, G., Ximenes, E., Nichols, N. N., Zhang, L., & Ladisch, M. (2013). Biological abatement of cellulase inhibitors. Bioresource Technology, 146, 604–610.PubMedGoogle Scholar
  19. 19.
    Koenig, K., & Andreesen, J. R. (1989). Molybdenum involvement in aerobic degradation of 2-furoic acid by Pseudomonas putida Fu1. Applied and Environmental Microbiology, 55, 1829–1834.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Koopman, F., Wierckx, N., de Winde, J. H., & Ruijssenaars, H. J. (2010). Identification and characterization of the furfural and 5-(hydroxymethyl) furfural degradation pathways of Cupriavidus basilensis HMF14. Proceedings of the National Academy of Sciences of the United States of America, 107(11), 4919–4924.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Lee, S. A., Wrona, L. J., Cahoon, A. B., Crigler, J., Eiteman, M. A., & Altman, E. (2016). Isolation and characterization of bacteria that use furans as the sole carbon source. Applied Biochemistry and Biotechnology, 178(1), 76–90.PubMedGoogle Scholar
  22. 22.
    Guarnieri, M. T., Franden, M. A., Johnson, C. W., & Beckham, G. T. (2017). Conversion and assimilation of furfural and 5-(hydroxymethyl) furfural by Pseudomonas putida KT2440. Metabolic Engineering Communications, 4, 22–28.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Boopathy, R., Bokang, H., & Daniels, L. (1993). Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. Journal of Industrial Microbiology, 11(3), 147–150.Google Scholar
  24. 24.
    Gutiérrez, T., Buszko, M. L., Ingram, L. O., & Preston, J. F. (2002). Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Applied Biochemistry and Biotechnology, 98, 327–340.PubMedGoogle Scholar
  25. 25.
    Taherzadeh, M. J., Gustafsson, L., Niklasson, C., & Lidén, G. (1999). Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 87(2), 169–174.PubMedGoogle Scholar
  26. 26.
    Tsuge, Y., Hori, Y., Kudou, M., Ishii, J., Hasunuma, T., & Kondo, A. (2014). Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions. Applied Microbiology and Biotechnology, 98(20), 8675–8683.PubMedGoogle Scholar
  27. 27.
    Gutiérez, T., Ingram, L. O., & Preston, J. F. (2006). Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1—an enzyme important in the detoxification of furfural during ethanol production. Journal of Biotechnology, 121(2), 154–164.Google Scholar
  28. 28.
    Liu, Z. L., Moon, J., Andersh, B. J., Slininger, P. J., & Weber, S. (2008). Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 81(4), 743–753.PubMedGoogle Scholar
  29. 29.
    Bowman, M. J., Jordan, D. B., Vermillion, K. E., Braker, J. D., Moon, J., & Liu, Z. L. (2010). Stereochemistry of furfural reduction by a Saccharomyces cerevisiae aldehyde reductase that contributes to in situ furfural detoxification. Applied and Environmental Microbiology, 76(15), 4926–4932.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Heux, S., Cachon, R., & Dequin, S. (2006). Cofactor engineering in Saccharomyces cerevisiae: expression of a H2O-forming NADH oxidase and impact on redox metabolism. Metabolic Engineering, 8(4), 303–314.PubMedGoogle Scholar
  31. 31.
    Heer, D., Heine, D., & Sauer, U. (2009). Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxidoreductases. Applied and Environmental Microbiology, 75(24), 7631–7638.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Trevisan, V. (1889). I generi e le specie delle Batteriacee (pp. 1–35). Zanaboni Gabuzzi.Google Scholar
  33. 33.
    Casadaban, M. J., & Cohen, S. N. (1980). Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. Journal of Molecular Biology, 138(2), 179–207.PubMedGoogle Scholar
  34. 34.
    Le Minor, L., & Popoff, M. Y. (1987). Designation of Salmonella enterica sp. nov., nom. rev., as the Type and Only Species of the Genus Salmonella: Request for an Opinion. International Journal of Systematic and Evolutionary Microbiology, 37, 465–468.Google Scholar
  35. 35.
    Sessitch, A., Coenye, T., Sturz, A. V., Vandamme, P., Barka, E. A., Salles, J. F., Van Elsas, J. D., Faure, D., Reiter, B., Glick, B. R., & Wang-Pruski, G. (2005). Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. International Journal of Systematic and Evolutionary Microbiology, 55(3), 1187–1192.Google Scholar
  36. 36.
    Guyer, M. S., Reed, R. R., Steitz, J. A., & Low, K. B. (1981). Identification of a sex-factor-affinity site in E. coli as γδ, in Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, 45(0), 135–140.Google Scholar
  37. 37.
    Schroeter, J. (1872). Ueber einige durch Bacterien gebildete Pigmente. Beitr Biol Pflanz, 1, 109–126.Google Scholar
  38. 38.
    Miller, J. H. (1972). Experiments in molecular genetics. Cold Spring Harbor: Cold Spring Laboratory Press.Google Scholar
  39. 39.
    Arkin, A. P., Cottingham, R. W., Henry, C. S., Harris, N. L., Stevens, R. L., Maslov, S., Dehal, P., Ware, D., Perez, F., Canon, S., & Sneddon, M. W. (2018). KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology, 36(7), 566–569.PubMedGoogle Scholar
  40. 40.
    Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., & Peterson, K. M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene., 166(1), 175–176.PubMedGoogle Scholar
  41. 41.
    Spaink, H. P., Okker, R. J., Wijffelman, C. A., Pees, E., & Lugtenberg, B. J. (1987). Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. Plant Molecular Biology, 9(1), 27–39.PubMedGoogle Scholar
  42. 42.
    Dennis, J. J., & Sokol, P. A. (1995). Electrotransformation of Pseudomonas, in Electroporation protocols for microorganisms (pp. 125–133). Humana Press.Google Scholar
  43. 43.
    Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology, 166(4), 557–580.PubMedGoogle Scholar
  44. 44.
    Nichols, N. N., & Mertens, J. A. (2008). Identification and transcriptional profiling of Pseudomonas putida genes involved in furoic acid metabolism. FEMS Microbiology Letters, 284(1), 52–57.PubMedGoogle Scholar
  45. 45.
    Wierckx, N. J., Schuurman, T. D., Kuijper, S. M., & Ruijssenaars, H. J. (2016). Genetically modified cell and process for use of said cell. United States patent 9,309,546.Google Scholar
  46. 46.
    Werpy, T., Peterson, G., Aden, A., Bozell, J., Holladay, J., White, J., Manheim, A., Elliot, D., Lasure, L., Jones, S., & Gerber, M. (2004). Top value added chemicals from biomass, Volume 1 - Results of screening for potential candidates from sugars and synthesis gas. DOE Scientific and Technical Information. Oak Ridge: US Department of Energy.Google Scholar
  47. 47.
    Koopman, F., Wierckx, N., de Winde, J. H., & Ruijssenaars, H. J. (2010). Efficient whole-cell biotransformation of 5-(hydroxymethyl) furfural into FDCA, 2, 5-furandicarboxylic acid. Bioresource Technology, 101(16), 6291–6296.PubMedGoogle Scholar
  48. 48.
    Hossain, G. S., Yuan, H., Li, J., Shin, H. D., Wang, M., Du, G., Chen, J., & Liu, L. (2017). Metabolic engineering of Raoultella ornithinolytica BF60 for production of 2, 5-furandicarboxylic acid from 5-hydroxymethylfurfural. Applied and Environmental Microbiology, 283, e02312–e02316.Google Scholar
  49. 49.
    Yang, C. F., & Huang, C. R. (2018). Isolation of 5-hydroxymethylfurfural biotransforming bacteria to produce 2, 5-furan dicarboxylic acid in algal acid hydrolysate. Journal of Bioscience and Bioengineering, 125(4), 407–412.PubMedGoogle Scholar
  50. 50.
    Karich, A., Kleeberg, S. B., Ullrich, R., & Hofrichter, M. (2018). Enzymatic preparation of 2, 5-furandicarboxylic acid (FDCA)—a substitute of terephthalic acid—by the joined action of three fungal enzymes. Microorganisms., 6(1), 5.PubMedCentralGoogle Scholar
  51. 51.
    Yuan, H., Li, J., Shin, H. D., Du, G., Chen, J., Shi, Z., & Liu, L. (2018). Improved production of 2, 5-furandicarboxylic acid by overexpression of 5-hydroxymethylfurfural oxidase and 5-hydroxymethylfurfural/furfural oxidoreductase in Raoultella ornithinolytica BF60. Bioresource Technology, 247, 1184–1188.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiologyMiddle Tennessee State UniversityMurfreesboroUSA
  2. 2.School of ChemicalMaterials and Biomedical EngineeringAthensUSA

Personalised recommendations