Advertisement

The Deoxymiroestrol and Isoflavonoid Production and Their Elicitation of Cell Suspension Cultures of Pueraria candollei var. mirifica: from Shake Flask to Bioreactor

  • Orapin Udomsin
  • Gorawit Yusakul
  • Tharita Kitisripanya
  • Thaweesak Juengwatanatrakul
  • Waraporn PutalunEmail author
Article

Abstract

To address the high demand for Pueraria candollei var. mirifica (PM) used as the active ingredient in health products and its difficulty to cultivate in the field, the growth and production of deoxymiroestrol (DME) and isoflavonoid (ISF) phytoestrogens in PM cell suspensions were studied. In a 125-mL shake flask, the cell suspension produced DME [78.7 ± 8.79–116 ± 18.2 μg/g dry weight (DW)] and ISF (140 ± 6.83–548 ± 18.5 μg/g DW), which are the predominant ISF glycosides. While ISF aglycones accumulated in the PM cell suspension cultured in the airlift bioreactor. The DME content was increased to 976 ± 79.6 μg/g DW when the PM cell suspension was cultured in the 5-L scale bioreactor. The production of DME and ISF was enhanced by elicitors including methyl jasmonate (MJ), yeast extract (YE), and chitosan (CHI). MJ produced the highest induction of DME accumulation, while ISF accumulation was the highest with YE treatment. Analysis of catalase activity implied that the elicitors enhanced ROS production, which resulted in the enhancement of DME and ISF production and accumulation in PM cell suspension cultures. PM cell suspension culture is a promising source of beneficial PM phytoestrogens that exhibit bioactivity that may useful for the treatment of menopausal symptoms.

Keywords

Pueraria candollei var. mirifica Cell suspension Bioreactor Deoxymiroestrol Isoflavonoid 

Notes

Acknowledgments

The authors thank Dr. Chaiyo Chaichantipyuth at the Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand, for providing authentic DME and KWA.

Funding Information

This research was financially supported by the Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand, and The Thailand Research Fund (IRN 61W0005).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2019_3094_MOESM1_ESM.docx (77 kb)
ESM 1 (DOCX 77 kb)

References

  1. 1.
    Malaivijitnond, S. (2012). Medical applications of phytoestrogens from the Thai herb Pueraria mirifica. Frontiers in Medicine, 6(1), 8–21.CrossRefGoogle Scholar
  2. 2.
    Cherdshewasart, W., & Sutjit, W. (2008). Correlation of antioxidant activity and major isoflavonoid contents of the phytoestrogen-rich Pueraria mirifica and Pueraria lobata tubers. Phytomedicine, 15(1-2), 38–43.CrossRefGoogle Scholar
  3. 3.
    Chattuwatthana, T., & Okello, E. (2015). Anti-collagenase, anti-elastase and antioxidant activities of Pueraria candollei var. mirifica root extract and Coccinia grandis fruit juice extract: an In vitro study. European Journal of Medicinal Plants, 5(4), 318–327.CrossRefGoogle Scholar
  4. 4.
    Thurston, R. C., & Joffe, H. (2011). Vasomotor symptoms and menopause: findings from the study of Women’s Health across the Nation. Obstetrics and Gynecology Clinics of North America, 38(3), 489–501.CrossRefGoogle Scholar
  5. 5.
    Wentzensen, N., & Trabert, B. (2015). Hormone therapy: short-term relief, long-term consequences. Lancet, 385(9980), 1806–1808.CrossRefGoogle Scholar
  6. 6.
    Rossouw, J. E., Anderson, G. L., Prentice, R. L., LaCroix, A. Z., Kooperberg, C., Stefanick, M. L., Jackson, R. D., Beresford, S. A., Howard, B. V., Johnson, K. C., Kotchen, J. M., & Ockene, J. (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women principal results from the Women’s Health Initiative randomized controlled trial. JAMA, 288(3), 321–333.CrossRefGoogle Scholar
  7. 7.
    Cherdshewasart, W., Subtang, S., & Dahlan, W. (2007). Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. Journal of Pharmaceutical and Biomedical Analysis, 43(2), 428–434.CrossRefGoogle Scholar
  8. 8.
    Yusakul, G., Putalun, W., Udomsin, O., Juengwatanatrakul, T., & Chaichantipyuth, C. (2011). Comparative analysis of the chemical constituents of two varieties of Pueraria candollei. Fitoterapia, 82(2), 203–207.CrossRefGoogle Scholar
  9. 9.
    Cherdshewasart, W., & Sriwatcharakul, S. (2007). Major isoflavonoid contents of the 1-year-cultivated phytoestrogen-rich herb, Pueraria mirifica. Bioscience, Biotechnology, and Biochemistry, 71(10), 2527–2533.CrossRefGoogle Scholar
  10. 10.
    Das, K. and Roychoudhury, A. (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2.Google Scholar
  11. 11.
    Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490–498.CrossRefGoogle Scholar
  12. 12.
    Rani, D., Meelaph, T., Kobtrakul, K., & Vimolmangkang, S. (2018). Optimizing Pueraria candollei var. mirifica cell suspension culture for prolonged maintenance and decreased variation of isoflavonoid from single cell lines. Plant Cell, Tissue and Organ Culture, 134, 433–443.CrossRefGoogle Scholar
  13. 13.
    Boonsnongcheep, P., Korsangruang, S., Soonthornchareonnon, N., Chintapakorn, Y., Saralamp, P., & Prathanturarug, S. (2010). Growth and isoflavonoid accumulation of Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell, Tissue and Organ Culture, 101, 119–126.CrossRefGoogle Scholar
  14. 14.
    Udomsuk, L., Juengwattanatrakul, T., Jarukamjorn, K., & Putalun, W. (2012). Increased miroestrol, deoxymiroestrol and isoflavonoid accumulation in callus and cell suspension cultures of Pueraria candollei var. mirifica. Acta Physiologiae Plantarum, 34(3), 1093–1100.CrossRefGoogle Scholar
  15. 15.
    Godoy-Hernández, G., & Vázquez-Flota, F. A. (2006). In V. M. Loyola-Vargas & F. Vázquez-Flota (Eds.), In plant cell culture protocols (pp. 51–58). Totowa: Humana Press.Google Scholar
  16. 16.
    Udomsin, O., Yusakul, G., Kraithong, W., Udomsuk, L., Kitisripanya, T., Juengwatanatrakul, T., & Putalun, W. (2019). Enhanced accumulation of high-value deoxymiroestrol and isoflavonoids using hairy root as a sustainable source of Pueraria candollei var. mirifica. Plant Cell, Tissue and Organ Culture, 136, 141–151.CrossRefGoogle Scholar
  17. 17.
    Yusakul, G., Udomsin, O., Juengwatanatrakul, T., Tanaka, H., Chaichantipyuth, C., & Putalun, W. (2013). Highly selective and sensitive determination of deoxymiroestrol using a polyclonal antibody-based enzyme-linked immunosorbent assay. Talanta, 114, 73–78.CrossRefGoogle Scholar
  18. 18.
    Góth, L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196(2-3), 143–151.CrossRefGoogle Scholar
  19. 19.
    Thanonkeo, S., & Sanha, P. (2006). Production of isoflavones, daidzein and genistein in callus cultures of Pueraria candollei Wall. ex Benth. var. mirifica. Songklanakarin J. Science and Technology, 28, 45–53.Google Scholar
  20. 20.
    Zhang, C. H., Wu, J. Y., & He, G. Y. (2002). Effects of inoculum size and age on biomass growth and paclitaxel production of elicitor-treated Taxus yunnanensis cell cultures. Applied Microbiology and Biotechnology, 60(4), 396–402.CrossRefGoogle Scholar
  21. 21.
    Zhao, D. X., Xing, J. M., Li, M. Y., Lu, D. P., & Zhao, Q. (2001). Optimization of growth and jaceosidin production in callus and cell suspension cultures of Saussurea medusa. Plant Cell, Tissue and Organ Culture, 67(3), 227–234.CrossRefGoogle Scholar
  22. 22.
    Korsangruang, S., Soonthornchareonnon, N., Chintapakorn, Y., Saralamp, P., & Prathanturarug, S. (2010). Effects of abiotic and biotic elicitors on growth and isoflavonoid accumulation in Pueraria candollei var. candollei and P. candollei var. mirifica cell suspension cultures. Plant Cell, Tissue and Organ Culture, 103, 333–342.CrossRefGoogle Scholar
  23. 23.
    Zimmermann, P., & Zentgraf, U. (2005). The correlation between oxidative stress and leaf senescence during plant development. Cellular & Molecular Biology Letters, 10(3), 515–534.Google Scholar
  24. 24.
    Sofo, A., Scopa, A., Nuzzaci, M., & Vitti, A. (2015). Ascorbate peroxidase and catalase activities and their genetic regulation in plants subjected to drought and salinity stresses. International Journal of Molecular Sciences, 16(12), 13561–13578.CrossRefGoogle Scholar
  25. 25.
    Zhang, L. R., & Xing, D. (2008). Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant & Cell Physiology, 49(7), 1092–1111.CrossRefGoogle Scholar
  26. 26.
    Gholizadeh, A. and Baghban Kohnehrouz, B. (2009) Activation of phenylalanine ammonia lyase as a key component of the antioxidative system of salt-challenged maize leaves. ed.Google Scholar
  27. 27.
    Jeong, Y. J., An, C. H., Park, S. C., Pyun, J. W., Lee, J., Kim, S. W., Kim, H. S., Kim, H., Jeong, J. C., & Kim, C. Y. (2018). Methyl jasmonate increases isoflavone production in soybean cell cultures by activating structural genes involved in isoflavonoid biosynthesis. Journal of Agricultural and Food Chemistry, 66(16), 4099–4105.CrossRefGoogle Scholar
  28. 28.
    Kirakosyan, A., Kaufman, P. B., Chang, S. C., Warber, S., Bolling, S., & Vardapetyan, H. (2006). Regulation of isoflavone production in hydroponically grown Pueraria montana (kudzu) by cork pieces, XAD-4, and methyl jasmonate. Plant Cell Reports, 25(12), 1387–1391.CrossRefGoogle Scholar
  29. 29.
    Zaheer, M., Reddy, V. D., & Giri, C. C. (2016). Enhanced daidzin production from jasmonic and acetyl salicylic acid elicited hairy root cultures of Psoralea corylifolia L. (Fabaceae). Natural Product Research, 30(13), 1542–1547.CrossRefGoogle Scholar
  30. 30.
    Petrov, V., Hille, J., Mueller-Roeber, B., & Gechev, T. S. (2015). ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in Plant Science, 6, 69.CrossRefGoogle Scholar
  31. 31.
    Shinde, A. N., Malpathak, N., & Fulzele, D. P. (2009). Optimized production of isoflavones in cell cultures of Psoralea corylifolia L. using elicitation and precursor feeding. Biotechnology and Bioprocess Engineering, 14(5), 612–618.CrossRefGoogle Scholar
  32. 32.
    Guo, Z. J., Lamb, C., & Dixon, R. A. (1998). Potentiation of the oxidative burst and isoflavonoid phytoalexin accumulation by serine protease inhibitors. Plant Physiology, 118(4), 1487–1494.CrossRefGoogle Scholar
  33. 33.
    Pauw, B., van Duijn, B., Kijne, J. W., & Memelink, J. (2004). Activation of the oxidative burst by yeast elicitor in Catharanthus roseus cells occurs independently of the activation of genes involved in alkaloid biosynthesis. Plant Molecular Biology, 55(6), 797–805.CrossRefGoogle Scholar
  34. 34.
    Chen, H., Seguin, P., Archambault, A., Constan, L., & Jabaji, S. (2009). Gene expression and isoflavone concentrations in soybean sprouts treated with chitosan. Crop Science, 49(1), 224–236.CrossRefGoogle Scholar
  35. 35.
    Malerba, M., & Cerana, R. (2015). Reactive oxygen and nitrogen species in defense/stress responses activated by chitosan in sycamore cultured cells. International Journal of Molecular Sciences, 16(2), 3019–3034.CrossRefGoogle Scholar
  36. 36.
    Morant, A. V., Jørgensen, K., Jørgensen, C., Paquette, S. M., Sánchez-Pérez, R., Møller, B. L., & Bak, S. (2008). β-Glucosidases as detonators of plant chemical defense. Phytochemistry, 69(9), 1795–1813.CrossRefGoogle Scholar
  37. 37.
    Morant, A. V., Bjarnholt, N., Kragh, M. E., Kjærgaard, C. H., Jørgensen, K., Paquette, S. M., Piotrowski, M., Imberty, A., Olsen, C. E., Møller, B. L., & Bak, S. (2008). The beta-glucosidases responsible for bioactivation of hydroxynitrile glucosides in Lotus japonicus. Plant Physiology, 147(3), 1072–1091.CrossRefGoogle Scholar
  38. 38.
    Chattopadhyay, S., Farkya, S., Srivastava, A. K., & Bisaria, V. S. (2002). Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnology and Bioprocess Engineering, 7(3), 138–149.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Pharmaceutical SciencesKhon Kaen UniversityKhon KaenThailand
  2. 2.Research Group for Faculty of Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB)National Research University-Khon Kaen UniversityKhon KaenThailand
  3. 3.Drug and Cosmetics Excellence CenterWalailak UniversityThasalaThailand
  4. 4.School of PharmacyWalailak UniversityThasalaThailand
  5. 5.Department of Pharmacognosy, Faculty of PharmacyMahidol UniversityBangkokThailand
  6. 6.Faculty of Pharmaceutical SciencesUbon Ratchathani UniversityUbon RatchathaniThailand

Personalised recommendations