Advertisement

Comparative Pyrolysis Characteristics and Kinetics of Typical Hardwood in Inert and Oxygenous Atmosphere

  • Xiaokang Xu
  • Renming Pan
  • Ruiyu ChenEmail author
  • Dongdong Zhang
Article

Abstract

Combustion (pyrolysis with oxygen) and pyrolysis without oxygen are two potential methods to convert wood into biofuels or biochemicals. To evaluate which is preponderant to convert wood into biofuels or biochemicals and provide guidance for optimization of product yield, the pyrolysis characteristics and kinetics of typical hardwood (black walnut) are comparatively investigated in nitrogen and air employing thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC). Two model-free methods including Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS) method are applied to obtain the kinetic parameters, and a model-fitting method called Coats–Redfern (CR) method is employed to estimate the reaction mechanism. The black walnut pyrolysis in nitrogen may be divided into two stages with the threshold of conversion rate α = 0.4, but that in air may be separated into three stages with the thresholds of α = 0.25 and 0.7. The reaction mechanism for pyrolysis in nitrogen may be assumed random nucleation and its subsequent growth, but that in air may be assumed random nucleation and its subsequent growth followed by chemical reaction. The average activation energy and natural logarithm of pre-exponential factor for the whole pyrolysis process in nitrogen and air are 211.59 and 187.73 kJ/mol and 32.33 and 28.36 min−1, respectively.

Keywords

Wood biomass Biofuels Pyrolysis Thermogravimetry Kinetics Mechanism 

Notes

Funding Information

This work was sponsored by the National Natural Science Foundation of China (No. 51806106 and 51806202), Natural Science Foundation of Jiangsu Province, China (No: BK20170838), and the Open Fund of the State Key Laboratory of Fire Science (SKLFS) Program (No: HZ2017-KF06).

References

  1. 1.
    Sundaram, V., Muthukumarappan, K., & Gent, S. (2017). Understanding the impacts of AFEX™ pretreatment and densification on the fast pyrolysis of corn stover, prairie cord grass, and switchgrass. Applied Biochemistry and Biotechnology, 181(3), 1060–1079.Google Scholar
  2. 2.
    Ding, Y., Zhou, R., Wang, C., Lu, K., & Lu, S. (2018). Modeling and analysis of bench-scale pyrolysis of lignocellulosic biomass based on merge thickness. Bioresource technology, 268, 77–80.Google Scholar
  3. 3.
    Jiang, L., Zhang, D., Li, M., He, J.-J., Gao, Z.-H., Zhou, Y., & Sun, J. H. (2018). Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS. Fuel, 222, 11–20.Google Scholar
  4. 4.
    Ding, Y., Ezekoye, O. A., Zhang, J., Wang, C., & Lu, S. (2018). The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass. Fuel, 232, 147–153.Google Scholar
  5. 5.
    Fei, Y., Deng, S., Chen, P., Liu, Y., Wan, Y., Olson, A., et al. (2007). Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover. Applied Biochemistry and Biotechnology, 137-140(1-12), 957–970.Google Scholar
  6. 6.
    Wang, C., Liu, H., Zhang, J., Yang, S., Zhang, Z., & Zhao, W. (2018). Thermal degradation of flame-retarded high-voltage cable sheath and insulation via TG-FTIR. Journal of Analytical and Applied Pyrolysis, 134, 167–175.Google Scholar
  7. 7.
    Hassan, E. B. M., Steele, P. H., & Ingram, L. (2009). Characterization of fast pyrolysis bio-oils produced from pretreated pine wood. Applied Biochemistry and Biotechnology, 154(1-3), 3–13.Google Scholar
  8. 8.
    Mesa-Pérez, J. M., Rocha, J. D., Barbosa-Cortez, L. A., Penedo-Medina, M., Luengo, C. A., & Cascarosa, E. (2013). Fast oxidative pyrolysis of sugar cane straw in a fluidized bed reactor. Applied Thermal Engineering, 56(1-2), 167–175.Google Scholar
  9. 9.
    Yu, F., Ji, D., Nie, Y., Luo, Y., Huang, C., & Ji, J. (2012). Study on the pyrolysis of cellulose for bio-oil with mesoporous molecular sieve catalysts. Applied Biochemistry and Biotechnology, 168(1), 174–182.Google Scholar
  10. 10.
    Darvell, L. I., Jones, J. M., Gudka, B., Baxter, X. C., Saddawi, A., Williams, A., & Malmgren, A. (2010). Combustion properties of some power station biomass fuels. Fuel, 89(10), 2881–2890.Google Scholar
  11. 11.
    Chen, R., Li, Q., Xu, X., & Zhang, D. (2019). Comparative pyrolysis characteristics of representative commercial thermosetting plastic waste in inert and oxygenous atmosphere. Fuel, 246, 212–221.Google Scholar
  12. 12.
    Zhang, D., Jiang, L., Lu, S., Cao, C.-Y., & Zhang, H.-P. (2018). Particle size effects on thermal kinetics and pyrolysis mechanisms of energetic 5-amino-1h-tetrazole. Fuel, 217, 553–560.Google Scholar
  13. 13.
    Huang, Y. F., Chiueh, P. T., Kuan, W. H., & Lo, S. L. (2013). Pyrolysis kinetics of biomass from product information. Applied Energy, 110(5), 1–8.Google Scholar
  14. 14.
    Trninić, M., Wang, L., Várhegyi, G., Grønli, M., & Skreiberg, Ø. (2012). Kinetics of corncob pyrolysis. Energy and Fuels, 26(4), 2005–2013.Google Scholar
  15. 15.
    Zhen, W., Zeng, G., Kosa, M., Huang, D., & Ragauskas, A. J. (2015). Pyrolysis oil-oased lipid production as biodiesel feedstock by Rhodococcus opacus. Applied Biochemistry and Biotechnology, 175(2), 1234–1246.Google Scholar
  16. 16.
    Gašparovič, L., Koreňová, Z., & Jelemenský, Ľ. (2010). Kinetic study of wood chips decomposition by TGA. Chemical Papers, 64(2), 174–181.Google Scholar
  17. 17.
    Slopiecka, K., Bartocci, P., & Fantozzi, F. (2012). Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy, 97, 491–497.Google Scholar
  18. 18.
    Müsellim, E., Tahir, M. H., Ahmad, M. S., & Ceylan, S. (2018). Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Applied Thermal Engineering, 137, 54–61.Google Scholar
  19. 19.
    Blasi, C. D., Branca, C., Lombardi, V., Ciappa, P., & Giacomo, C. D. (2013). Effects of particle size and density on the packed-bed pyrolysis of wood. Energy and Fuels, 27(11), 6781–6791.Google Scholar
  20. 20.
    Liqing, L., & Donghua, C. (2004). Application of iso-temperature method of multiple rate to kinetic analysis. Journal of Thermal Analysis and Calorimetry, 78(1), 283–293.Google Scholar
  21. 21.
    Vlaev, L., Nedelchev, N., Gyurova, K., & Zagorcheva, M. (2008). A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. Journal of Analytical and Applied Pyrolysis, 81(2), 253–262.Google Scholar
  22. 22.
    Jiang, H., Wang, J., Wu, S., Wang, B., & Wang, Z. (2010). Pyrolysis kinetics of phenol–formaldehyde resin by non-isothermal thermogravimetry. Carbon, 48(2), 352–358.Google Scholar
  23. 23.
    Islam, M. A., Auta, M., Kabir, G., & Hameed, B. H. (2016). A thermogravimetric analysis of the combustion kinetics of karanja ( Pongamia pinnata ) fruit hulls char. Bioresource Technology, 200, 335–341.Google Scholar
  24. 24.
    Du, W., Wang, G., Wang, Y., & Liu, X. (2019). Thermal degradation of bituminous coal with both model-free and model-fitting methods. Applied Thermal Engineering, 152, 169–174.Google Scholar
  25. 25.
    Moriana, R., Zhang, Y., Mischnick, P., Li, J., & Ek, M. (2014). Thermal degradation behavior and kinetic analysis of spruce glucomannan and its methylated derivatives. Carbohydrate Polymers, 106(9), 60–70.Google Scholar
  26. 26.
    Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part C Polymer Letters, 4(5), 323–328.Google Scholar
  27. 27.
    Takeo, O. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38, 1881–1886.Google Scholar
  28. 28.
    Kissinger, H. (1956). Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57(4), 217–221.Google Scholar
  29. 29.
    Akahira, T., & Sunose, T. (1971). Method of determining activation deterioration constant of electrical insulating materials. Science and Technology, 16, 22–31.Google Scholar
  30. 30.
    Coats, A. A. W., & Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68–69.Google Scholar
  31. 31.
    Kissinger, H. (1957). Reaction kinetics in differential thermal analysis. Analytical chemistry, 29(11), 1702–1706.Google Scholar
  32. 32.
    Li, K. Y., Huang, X., Fleischmann, C., Rein, G., & Ji, J. (2014). Pyrolysis of medium-density fiberboard: optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger’s method. Energy and Fuels, 28(9), 6130–6139.Google Scholar
  33. 33.
    Ghaly, A. E., & Ergudenler, A. (1991). Thermal degradation of cereal straws in air and nitrogen. Applied Biochemistry and Biotechnology, 28-29(1), 111–126.Google Scholar
  34. 34.
    Liang, F., Wang, R., Xiang, H., Yang, X., Zhang, T., Hu, W., et al. (2018). Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS. Bioresource Technology, 256, 53–60.Google Scholar
  35. 35.
    Ding, Y., Zhang, W., Yu, L., & Lu, K. (2019). The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis. Energy, 176, 582–588.Google Scholar
  36. 36.
    Chen, Z., Hu, M., Zhu, X., Guo, D., Liu, S., Hu, Z., Xiao, B., Wang, J., & Laghari, M. (2015). Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresource Technology, 192, 441–450.Google Scholar
  37. 37.
    Ding, Y., Ezekoye, O. A., Lu, S., Wang, C., & Zhou, R. (2017). Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood. Energy Conversion and Management, 132, 102–109.Google Scholar
  38. 38.
    Anca-Couce, A., & Obernberger, I. (2016). Application of a detailed biomass pyrolysis kinetic scheme to hardwood and softwood torrefaction. Fuel, 167, 158–167.Google Scholar
  39. 39.
    Grønli, M. G., Várhegyi, G., & Blasi, C. D. (2002). Thermogravimetric analysis and devolatilization kinetics of wood. Industrial and Engineering Chemistry Research, 41(17), 4201–4208.Google Scholar
  40. 40.
    Asmadi, M., Kawamoto, H., & Saka, S. (2011). Gas-and solid/liquid-phase reactions during pyrolysis of softwood and hardwood lignins. Journal of Analytical and Applied Pyrolysis, 92(2), 417–425.Google Scholar
  41. 41.
    Khawam, A., & Flanagan, D. R. (2006). Solid-state kinetic models: basics and mathematical fundamentals. The Journal of Physical Chemistry B, 110(35), 17315–17328.Google Scholar
  42. 42.
    Sergey, B. (2011). Alan K, Criado, José M, Perezmaqueda, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520(1-2), 1–19.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations