Purification and Characterization of Cellulase from Obligate Halophilic Aspergillus flavus (TISTR 3637) and Its Prospects for Bioethanol Production

  • Amna Bano
  • Xiaoming Chen
  • Sehanat PrasongsukEmail author
  • Ali Akbar
  • Pongtharin Lotrakul
  • Hunsa Punnapayak
  • Muhammad Anwar
  • Sumbal Sajid
  • Imran AliEmail author


A cellulase from the extreme obligate halophilic fungus, Aspergillus flavus, isolated from a man-made solar saltern in Phetchaburi, Thailand, was purified by ammonium sulfate precipitation and using Sephadex G-100 gel filtration column chromatography. The cellulase was found to be approximately 55 kDa by SDS-PAGE. Using CMC as a substrate, the specific activity of the cellulase was 62.9 units (U) mg−1 with Vmax and Km values of 37.87 mol min−1 mg−1 and 3.02 mg mL−1, respectively. Characterization of the enzyme revealed it to be an extremozyme, having an optimum activity at pH 10, 60 °C, and 200 g L−1 of NaCl. The enzyme activity was not significantly altered by the addition of divalent metal cations at 2 mM and neither did ß-mercaptoethanol, while EDTA was found strongly inhibiting the cellulase. Compared with commercial cellulase, the purified cellulase from A. flavus was more active in the extremity of conditions, especially at pH 10, 60 °C, and 150 g L−1 NaCl, whereas the commercial cellulase had a very low activity.


Halophilic fungi Aspergillus flavus Cellulose Extremozyme 


Funding Information

This research was funded by the Ratchadapisek Sompoch Endowment Fund (2016), Chulalongkorn University (CU59-049-EN).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Criquet, S. (2002). Measurement and characterization of cellulase activity in sclerophyllous forest litter. Journal of Microbiolgical Methods, 50(2), 165–173.CrossRefGoogle Scholar
  2. 2.
    Ilmen, M., Saloheimo, A., Onnela, M. L., & Penttilä, M. E. (1997). Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Applied Environmental Microbiology, 63(4), 1298–1306.Google Scholar
  3. 3.
    Wood, T. M., & Bhat, K. M. (1988). Methods for measuring cellulase activities. Methods in Enzymology, 160, 87–112.CrossRefGoogle Scholar
  4. 4.
    Bhat, M. (2005). Cellulases and related enzymes in biotechnology. Biotechnological Advances, 18(5), 355–383.CrossRefGoogle Scholar
  5. 5.
    Acharya, S., & Chaudhary, A. (2012). Bioprospecting thermophiles for cellulase production: a review. Brazilian Journal of Microbiology, 43(3), 844–856.CrossRefGoogle Scholar
  6. 6.
    Ali, I., Kanhayuwa, L., Rachdawong, S., & Rakshit, S. K. (2013). Identification, phylogenetic analysis and characterization of obligate halophilic fungi isolated from a man-made solar saltern in Phetchaburi province, Thailand. Annals of Microbiology, 63(3), 887–895.CrossRefGoogle Scholar
  7. 7.
    Ali, F. S., Akbar, A., Prasongsuk, S., Permpornsakul, P., Yanwisetpakdee, B., Lotrakul, P., Punnapayak, H., Asrar, M., & Ali, I. (2018). Penicillium imranianum, a new species from the man-made solar saltern of Phetchaburi province, Thailand. Pakistan Journal of Botany, 50(5), 2055–2058.Google Scholar
  8. 8.
    Ali, I. (2014). Seven big challenges for Pakistan-and the lessons they could teach. The Futurist, 48(5), 22–26.Google Scholar
  9. 9.
    Ali, I., Siwarungson, N., Punnapayak, H., Lotrakul, P., Prasongsuk, S., Bankeeree, W., & Rakshit, S. K. (2014). Screening of potential biotechnological applications from obligate halophilic fungi, isolated from a man-made solar saltern located in Phetchaburi province, Thailand. Pakistan Journal of Botany, 46, 983–988.Google Scholar
  10. 10.
    Ali, I., Prasongsuk, S., Akbar, A., Aslam, M., Lotrakul, P., Punnapayak, H., & Rakshit, S. K. (2016). Hypersaline habitats and halophilic microorganisms. Maejo International Journal of Science and Technology, 10, 330–345.Google Scholar
  11. 11.
    Ali, I., Akbar, A., Aslam, M., Ullah, S., Anwar, M., Punnapayak, H., Lotrakul, P., Prasongsuk, S., Yanwisetpakdee, B., & Permpornsakul, P. (2016). Comparative study of physical factors and microbial diversity of four man-made extreme ecosystems. Proceeding of National Academy of Sciences India B, 86(3), 767–778.CrossRefGoogle Scholar
  12. 12.
    Ariffin, H., Abdullah, N., Umi Kalsom, M., Shirai, Y., & Hassan, M. (2006). Production and characterization of cellulase by Bacillus pumilus EB3. International Journal of Engineering & Technology, 3(1), 47–53.Google Scholar
  13. 13.
    Jeya, M., Joo, A. R., Lee, K. M., Tiwari, M. K., Lee, K. M., Kim, S. J., & Lee, J. K. (2010). Characterization of β-glucosidase from a strain of Penicillium purpurogenum KJS506. Applied Microbiology and Biotechnology, 86(5), 1473–1484.CrossRefGoogle Scholar
  14. 14.
    Li, X., Wang, H. L., Li, T., & Yu, H. Y. (2012). Purification and characterization of an organic solvent-tolerant alkaline cellulase from a halophilic isolate of Thalassobacillus. Biotechnology Letters, 34(8), 1531–1536.CrossRefGoogle Scholar
  15. 15.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anals of Chemistry, 31(3), 426–428.CrossRefGoogle Scholar
  16. 16.
    Ghose, T. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.CrossRefGoogle Scholar
  17. 17.
    Lowry, O. (1951). Protein measurement with folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.Google Scholar
  18. 18.
    Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577.CrossRefGoogle Scholar
  19. 19.
    Pečiulytė, D. (2007). Isolation of cellulolytic fungi from waste paper gradual recycling materials. Ekologija, 53(4), 11–18.Google Scholar
  20. 20.
    Sivaramanan, S. (2014). Culturing cellulolytic fungi in sea water. International Journal of Science Research Publication, 4, 1–6.Google Scholar
  21. 21.
    Gunny, A. A. N., Arbain, D., Jamal, P., & Gumba, R. E. (2015). Improvement of halophilic cellulase production from locally isolated fungal strain. Saudi Journal of Biological Sciences, 22(4), 476–483.CrossRefGoogle Scholar
  22. 22.
    Zhang, G., Li, S., Xue, Y., Mao, L., & Ma, Y. (2012). Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles, 16(1), 35–43.CrossRefGoogle Scholar
  23. 23.
    Wang, G., Zhang, X., Wang, L., Wang, K., Peng, F., & Wang, L. (2012). The activity and kinetic properties of cellulases in substrates containing metal ions and acid radicals. Advances in Biology and Chemistry, 2(4), 390–395.CrossRefGoogle Scholar
  24. 24.
    Ali, I., Akbar, A., Anwar, M., Prasongsuk, S., Lotrakul, P., & Punnapayak, H. (2015). Purification and characterization of a polyextremophilic α-amylase from an obligate halophilic Aspergillus penicillioides isolate and its potential for souse with detergents. Biomed Research International.
  25. 25.
    Ladeira, S. A., Cruz, E., Delatorre, A. B., Barbosa, J. B., & Leal Martins, M. L. (2015). Cellulase production by thermophilic Bacillus sp: SMIA-2 and its detergent compatibility. Electronic Journal of Biotechnology, 18(2), 110–115.CrossRefGoogle Scholar
  26. 26.
    Ali, I., Akbar, A., Anwar, M., Yanwisetpakdee, B., Prasongsuk, S., Lotrakul, P., & Punnapayak, H. (2014). Purification and characterization of extracellular, polyextremophilic α-amylase obtained from halophilic Engyodontium album. Iranian Journal of Biotechnology, 12(4), 35–40.CrossRefGoogle Scholar
  27. 27.
    Shikata, S., Saeki, K., Okoshi, H., Yoshimatsu, T., Ozaki, K., Kawai, S., & Ito, S. (1990). Alkaline cellulases for laundry detergents: production by alkalophilic strains of Bacillus and some properties of the crude enzymes. Agriculture Biology and Chemistry, 54(1), 91–96.Google Scholar
  28. 28.
    Ali, I., Akbar, A., Yanwisetpakdee, B., Prasongsuk, S., Lotrakul, P., & Punnapayak, H. (2014). Purification, characterization, and potential of saline waste water remediation of a polyextremophilic α-amylase from an obligate halophilic Aspergillus gracilis. Biomed Research International.
  29. 29.
    Bano, A., Hussain, J., Akbar, A., Mehmood, K., Anwar, M., Hasni, M. S., Ullah, S., Sajid, S., & Ali, I. (2018). Biosorption of heavy metals by obligate halophilic fungi. Chemosphere, 199, 218–222.CrossRefGoogle Scholar
  30. 30.
    Maurya, D. P., Singla, A., & Negi, S. (2015). An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3. Biotech, 5(5), 597–609.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Life Sciences and EngineeringSouthwest University of Science and TechnologyMianyangChina
  2. 2.Institute of BiochemistryUniversity of BalochistanQuettaPakistan
  3. 3.Plant Biomass Utilization Research Unit, Botany DepartmentChulalongkorn UniversityBangkokThailand
  4. 4.Department of MicrobiologyUniversity of BalochistanQuettaPakistan
  5. 5.Department of Biology, Faculty of Science and TechnologyUniversitas AirlanggaSurabayaIndonesia

Personalised recommendations