Advertisement

Bioreactor Membranes for Laccase Immobilization Optimized by Ionic Liquids and Cross-Linking Agents

  • Sihem HajKacem
  • Said GalaiEmail author
  • Francisco José Hernández Fernandez
  • Antonia Pérez de los Ríos
  • Issam Smaali
  • Joaquín Quesada Medina
Article

Abstract

A novel concept of membrane bioreactor based on polymeric ionic liquids laccase membrane has been implemented in batch process for decolorization of the anthraquinonic dye Remazol Brillant Blue R (RBBR). New laccase immobilization strategy has been optimized by casting the enzyme into a polymeric inclusion membrane (PIM) using ionic liquids (ILs) and polyvinyl chloride (PVC) leading to laccase polymeric IL membrane (PILM). Four different ILs (1-octyl-3-metylimidazolium bis(trifluoromethylsulfonyl)imide, [OMIM][NTF2]; cholinium bis(trifluoromethylsulfonyl)imide, [Ch ol][NTF2]; cholinium dihydrogenphosphate, [Chol][H2PO4] and hydroxyethylammonium formate, [HEA][Fo]) have been screened and mixed to constitute the active phase of the support of PIM. This strategy has been fully succeeded since high laccase immobilization rates were recorded (about 98%) when using the optimal mixture containing three ILs (45% [OMIM][NTf2]/5% [Chol][NTf2]/2.5% [HEA][Fo]) and supplemented by 0.5% glutaraldehyde. It was found that such mixture contributes to increase the stability and reusability of laccase-PILM during eight successive assays in a batch discontinued stirred reactor. Decolorization rate of 75% has been reached in the batch decolorization process of RBBR with high reusability yield.

Graphical Abstract

Decolorization of RBBR by PILM_laccase

Keywords

Laccase Ionic liquid Polymer inclusion membrane Immobilization Decolorization 

Notes

Funding Information

This work was partially supported by the MICINN ENE2011-25188 and SENECA Foundation 18975/JLI/2013 grants. Dr. Said Galai and PhD. Sihem Haj Kacem have postdoctoral and doctoral fellowships from Erasmus Mundus EU Mare Nostrum Program at the University of Murcia and the University of Cartagena, respectively.

References

  1. 1.
    Hessel, C., Allegre, C., Maisseu, M., Charbit, F., & Moulin, P. (2007). Guidelines and legislation for dye house effluents. Journal of Environmental Management, 83-2, 171–180.Google Scholar
  2. 2.
    Babu, B. R., Parande, A. K., Raghu, S., & Prem, K. T. (2007). Textile Technology Cotton Textile Processing: Waste Generation and Effluent Treatment. Journal of Cotton Science, 11-3, 141–153.Google Scholar
  3. 3.
    Moya, R., Hernández, M., García-Martín, A. B., Ball, A. S., & Arias, M. E. (2010). Contributions to a better comprehension of redox-mediated decolouration and detoxification of azo dyes by a laccase produced by Streptomyces cyaneus CECT 3335. Bioresource Technology, 101(7), 2224–2229.Google Scholar
  4. 4.
    Gottlieb, A., Shaw, C., Smith, A., Wheatley, A., & Forsythe, S. (2003). The toxicity of textile reactive azo dyes after hydrolysis and decolorization. Journal of Biotechnology, 101, 49–56.Google Scholar
  5. 5.
    Solís, M., Solís, A., Pérez, H. I., Manjarrez, N., & Flores, M. (2012). Microbial decolouration of azo dyes: a review. Process Biochemistry, 47-12, 1723–1748.Google Scholar
  6. 6.
    Carneiro, P. A., Umbuzeiro, G. A., Oliveira, D. P., & Zanoni, M. V. B. (2010). Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. Journal of Hazardous Materials, 174(1-3), 694–699.CrossRefGoogle Scholar
  7. 7.
    Mot, A. C., Parvu, M., Damian, G., Irimie, F. D., Darula, Z., Medzihradszky, K. F., Brema, B., & Silaghi-Dumitrescu, R. (2012). A “yellow” laccase with “blue” spectroscopic features, from Sclerotinia sclerotiorum. Process Biochemistry, 47(6), 968–975.CrossRefGoogle Scholar
  8. 8.
    Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: A review. Environment International, 30-7, 953–971.Google Scholar
  9. 9.
    Call, H. P., & Mücke, I. (1997). Overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (lignozym®-process). Journal of Biotechnology, 53, 163–202.Google Scholar
  10. 10.
    Dwivedi, U. N., Singh, P., Pandey, V. P., & Kumar, A. (2011). Structure–function relationship among bacterial, fungal and plant laccases. Journal of Molecular Catalysis B: Enzymatic, 68(2), 117–128.CrossRefGoogle Scholar
  11. 11.
    Galai, S., Korri-Youssoufi, H., & Marzouki, M. N. (2014). Characterization of yellow bacterial laccase SmLac/role of redox mediators in azo dye decolorization. Journal of Chemical Technology and Biotechnology, 89(11), 1741–1750.CrossRefGoogle Scholar
  12. 12.
    Mendoza, L., Jonstrup, M., Hatti-Kaul, R., & Mattiasson, B. (2011). Azo dye decolorization by a laccase/mediator system in a membrane reactor: Enzyme and mediator reusability. Enzyme and Microbial Technology, 49(5), 478–484.CrossRefGoogle Scholar
  13. 13.
    Mahboubi, A., Ylitervo, P., Doyen, W., De Wever, H., & Taherzadeh, M. T. (2016). Reverse membrane bioreactor: Introduction to a new technology for biofuel production. Biotechnology Advances, 34(5), 954–975.CrossRefGoogle Scholar
  14. 14.
    Galai, S., Pérez De Los Ríos, A., Hernández-Fernández, F. J., Mateo Ramírez, F., Haj Kacem, S., & Quesada-Medina, J. (2015). Application of microbial fuel cell for azoic dye decolorization with simultaneous bioenergy production using single bacterial strain. Chemical Engineering and Technology, 38(9), 1511–1518.Google Scholar
  15. 15.
    HajKacem, S., Galai, S., Hernandez-Fernandez, F. J., de Los Rios, A. P., & Smaali, I. (2017). New Efficient Laccase Immobilization Strategy Using Ionic Liquids for Biocatalysis and Microbial Fuel Cells Applications. Journal of Chemical Technology and Biotechnology, 93(1), 174–183.  https://doi.org/10.1002/jctb.5337.
  16. 16.
    Ruiz, A., de los Ríos, A. P., Hernández, F. J., Janssen, M. H. A., Schoevaart, R., Van Rantwijk, F., & Sheldon, R. A. (2007). A cross-linked enzyme aggregate of Candida Antarctica lipase B is active in denaturing ionic liquid. Enzyme and Microbial Technology, 40, 1095–1099.Google Scholar
  17. 17.
    De los Ríos, A. P., Hernández-Fernández, F. J., Gómez, D., Rubio, M., & Víllora, G. (2006). A new recirculating enzymatic membrane reactor for ester synthesis in ionic liquid/supercritical carbon dioxide biphasic systems. Applied Catalysis B: Environmental, 67, 121–126.Google Scholar
  18. 18.
    Hernández-Fernández, F. J., de los Ríos, A. P., Lozano-Blanco, L. J., & Godínez, C. (2010). Biocatalytic ester synthesis in ionic liquid media. Journal of Chemical Technology and Biotechnology, 85, 1423–1435.Google Scholar
  19. 19.
    Rehmann, L., Ivanova, E., Gunaratne, H. Q. N., Seddon, K. R., & Stephens, G. (2014). Enhanced laccase stability through mediator partitioning into hydrophobic ionic liquids. Green Chemistry, 16(3), 1462–1469.CrossRefGoogle Scholar
  20. 20.
    Sheldon, R. A. (2001). Catalytic reactions in ionic liquids. Chemical Communications, 23, 2399–2407.Google Scholar
  21. 21.
    Lozano, L. J., Godinez, C., de los Rios, A. P., Hernandez-Fernandez, F. J., Sanchez-Segado, S., & Alguacil, F. J. (2011). Recent advances in supported ionic liquid membrane technology. Journal of Membrane Science, 376(1-2), 1–14.Google Scholar
  22. 22.
    Tomás-Alonso, F., Rubio, A. M., Álvarez, R., & Ortuño, J. A. (2013). Dynamic potential response and SEM-EDX studies of polymeric inclusion membranes based on ionic liquids. International Journal of Electrochemical Science, 8, 4955–4969.Google Scholar
  23. 23.
    Tavares, A. P. M., Pinho, B., Rodriguez, O., & Macedo, E. A. (2012). Biocatalysis in Ionic Liquid: Degradation of Phenol by Laccase. Procedia Engineering, 42, 226–230.Google Scholar
  24. 24.
    Moniruzzaman, M., & Ono, T. (2013). Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment. Bioresource Technology, 127, 132–137.CrossRefGoogle Scholar
  25. 25.
    Galai, S., Pérez De Los Rios, A., Hernández-Fernández, F. J., HajKacem, S., & Tomas Alonso, F. (2015). Over-activity and stability of laccase using ionic liquids: screening and application in dyes decolorization. RSC Advances, 5(21), 16173–16189.Google Scholar
  26. 26.
    Galai, S., Touhami, Y., & Marzouki, M. N. (2012). Reponse surface methodology applied to laccase activities exhibited by Strenotrophomonas maltophilia AAP56 in different growth conditions. BioResources, 7(1), 706–726.Google Scholar
  27. 27.
    Galai, S., Limam, F., & Marzouki, M. N. (2010). Decolorization of an industrial effluent by free and immobilized cells of Stenotrophomonas maltophilia AAP56. Implementation of efficient down flow column reactor. World Journal of Microbiology and Biotechnology, 26(8), 1341–1347.CrossRefGoogle Scholar
  28. 28.
    Hernández-Fernández, F. J., Pérez de los Ríos, A., Mateo-Ramírez, F., Godínez, C., Lozano-Blanco, L. J., Moreno, J. I., & Tomás-Alonso, F. (2015). New application of supported ionic liquids membranes as proton exchange membranes in microbial fuel cell for waste water treatment. Chemical Engineering Journal, 279, 115–119.Google Scholar
  29. 29.
    Fernández-Fernández, M., Ángeles-Sanromán, M., & Moldes, D. (2013). Recent developments and applications of immobilized laccase. Biotechnology Advances, 31(8), 1808–1825.CrossRefGoogle Scholar
  30. 30.
    Bagewadi, Z. B., Mulla, S. I., & Ninnekar, H. Z. (2017). Purification and immobilization of laccase from Trichoderma harzianum strain HZN10 and its application in dye decolorization. Journal, Genetic Engineering & Biotechnology, 15(1), 139–150.CrossRefGoogle Scholar
  31. 31.
    Chao, C., Guan, H., Zhang, J., Liu, Y., Zaho, Y., & Zhang, B. (2017). Immobilization of laccase onto porous polyvinyl alcohol/halloysite hybrid beads for dye removal. Water Science and Technology, 77, 809–818.Google Scholar
  32. 32.
    Wu, X., Hou, M., & Ge, J. (2015). Metal–organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization. Catalysis Science and Technology, 5(12), 5077–5085.CrossRefGoogle Scholar
  33. 33.
    Zhu, L., Gong, L., Zhang, Y., Wang, R., Ge, J., Liu, Z., & Zare, R. N. (2013). Rapid detection of phenol using a membrane containing laccase nanoflowers. Aces Communications Chemistry-An Asian Journal, 8(10), 2358–2360.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Faculty of Chemistry, Regional Campus of Excellence “Mare Nostrum”University of Murcia (UMU)MurciaSpain
  2. 2.Department of Biological and Chemical Engineering, Laboratory of Protein Engineering and Bioactive Molecule, National Institute of Applied Sciences and TechnologyUniversity of CarthageTunis CedexTunisia
  3. 3.Department of Biochemistry, Laboratory of Clinical Biology, National Institute of NeurologyUniversity of Tunis El ManarTunisTunisia

Personalised recommendations