Advertisement

An Assessment of HbA1c in Diabetes Mellitus and Pre-diabetes Diagnosis: a Multi-centered Data Mining Study

  • Muhittin A. SerdarEmail author
  • Mustafa Serteser
  • Yasemin Ucal
  • Hande F. Karpuzoglu
  • Fehime B. Aksungar
  • Abdurrahman Coskun
  • Meltem Kilercik
  • İbrahim Ünsal
  • Aysel Özpınar
Article
  • 22 Downloads

Abstract

HbA1c test has been widely used to evaluate glycemic control in patients with diabetes. However, there are controversial results regarding the value of HbA1c in the diagnosis of diabetes mellitus (DM). The present study investigates the diagnostic effectiveness of HbA1c in a large patient group. The oral glucose tolerance test and HbA1c results of 6551 patients (4704 healthy, 1345 pre-diabetes, 502 DM) in 12 different medical centers in Turkey between 2010 and 2016 were examined to understand the effectiveness of HbA1c in the diagnosis of DM. Different Roche systems were used for measuring HbA1c via the immunoturbidimetric method. The DM ROC curves revealed the diagnostic sensitivity, specificity, and AUC of 74.5%, 87.1%, and 0.866 (CI 95% 0.858–0.875), respectively, for HbA1c (at the cut-off 41 mmol/mol, 5.9%). For HbA1c at the universal diagnostic decision value of 48 mmol/mol (6.5%), the sensitivity and specificity were determined as 32.4% and 99.9%, respectively. The ROC curves for fasting plasma glucose (FPG) revealed the diagnostic sensitivity, specificity, and AUC of 71.3%, 85.3%, and 0.853 (CI 95% 0.844–0.861), respectively. However, the ROC curve results for pre-diabetes (HbA1c at the cut-off value of 39 mmol/mol, 5.7%) revealed the diagnostic sensitivity, specificity, and AUC of 45.7%, 76.4%, and 0.641, respectively. Furthermore, it was shown that the changes in HbA1c values due to gender and age had no clinical effect on the diagnosis. According to our results, it remains challenging to suggest HbA1c measurements can have a significant contribution to the FPG measurements. It was found that the sensitivity is specifically low in the assessment of the pre-diabetes data. Additionally, considering the problems associated with Hb1Ac measurements, further studies conducted in different regions by using different methods are required.

Keywords

HbA1c Diabetes mellitus OGTT Fasting plasma glucose 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    American Diabetes Association. (2017). Standards of medical care in diabetes. Diabetes Care, 40(Suppl1), S1–S135.Google Scholar
  2. 2.
    International Expert Committee. (2009). International Expert Committee report on the role of the A1c assay in the diagnosis of diabetes. Diabetes Care, 32(7), 1327–1334.CrossRefGoogle Scholar
  3. 3.
    WHO Guidelines Approved by the Guidelines Review Committee (2011). Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus: abbreviated report of a WHO consultation. Geneva.Google Scholar
  4. 4.
    Chen, L., Magliano, D. J., & Zimmet, P. Z. (2012). The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nature Reviews. Endocrinology, 8(4), 228–236.CrossRefGoogle Scholar
  5. 5.
    Yamanouchi, T., Akanuma, Y., Toyota, T., Kuzuya, T., Kawai, T., Kawazu, S., Yoshioka, S., Kanazawa, Y., Ohta, M., Baba, S., et al. (1991). Comparison of 1,5-anhydroglucitol, HbA1c, and fructosamine for detection of diabetes mellitus. Diabetes, 40(1), 52–57.CrossRefGoogle Scholar
  6. 6.
    Jing, F., Jun, L., Wang, Y., Zhu, M., Yong, Z., Fei, X., & Zhang, J. (2008). A novel fully enzymatic method for determining glucose and 1,5-anhydro-D-glucitol in serum of one cuvette. Applied Biochemistry and Biotechnology, 150(3), 327–335.CrossRefGoogle Scholar
  7. 7.
    Heianza, Y., Hara, S., Arase, Y., Saito, K., Fujiwara, K., Tsuji, H., Kodama, S., Hsieh, S. D., Mori, Y., Shimano, H., Yamada, N., Kosaka, K., & Sone, H. (2011). HbA1c 5·7-6·4% and impaired fasting plasma glucose for diagnosis of prediabetes and risk of progression to diabetes in Japan (TOPICS 3): a longitudinal cohort study. Lancet, 378(9786), 147–155.CrossRefGoogle Scholar
  8. 8.
    Cavagnolli, G., Comerlato, J., Comerlato, C., Renz, P. B., Gross, J. L., & Camargo, J. L. (2011). HbA(1c) measurement for the diagnosis of diabetes: is it enough? Diabetic Medicine, 28(1), 31–35.CrossRefGoogle Scholar
  9. 9.
    Nowicka, P., Santoro, N., Liu, H., Lartaud, D., Shaw, M. M., Goldberg, R., Guandalini, C., Savoye, M., Rose, P., & Caprio, S. (2011). Utility of hemoglobin A(1c) for diagnosing prediabetes and diabetes in obese children and adolescents. Diabetes Care, 34(6), 1306–1311.CrossRefGoogle Scholar
  10. 10.
    Little, R. R., Rohlfing, C. L., Wiedmeyer, H. M., Myers, G. L., Sacks, D. B., & Goldstein, D. E. (2004). The National Glycohemoglobin Standardization Program: a five-year progress report. Clinical Chemistry, 47(11), 1985–1992.Google Scholar
  11. 11.
    International Expert Committee. (2009). The International Expert Committee report on the role of the HbA assay in the diagnosis of diabetes. Diabetes Care, 32(7), 1327–1334.CrossRefGoogle Scholar
  12. 12.
    Lenters-Westra, E., & English, E. (2017). Evaluating new HbA1c methods for adoption by the IFCC and NGSP reference networks using international quality targets. Clinical Chemistry and Laboratory Medicine, 55(9), 1426–1434.CrossRefGoogle Scholar
  13. 13.
    Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I., & Chouvarda, I. (2017). Machine learning and data mining methods in diabetes research. Computational and Structural Biotechnology Journal, 15, 104–116.CrossRefGoogle Scholar
  14. 14.
    Martin-Sanchez, F. J., Aguiar-Pulido, V., Lopez-Campos, G. H., Peek, N., & Sacchi, L. (2017). Secondary use and analysis of big data collected for patient care. Yearbook of Medical Informatics, 26(1), 28–37.CrossRefGoogle Scholar
  15. 15.
    American Diabetes Association. (2017). Classification and diagnosis of diabetes. Diabetes Care, 40(Suppl 1), 11–24.CrossRefGoogle Scholar
  16. 16.
    Nathan, D. M., Davidson, M. B., DeFronzo, R. A., Heine, R. J., Henry, R. R., Pratley, R., Zinman, B., & American Diabetes Association. (2007). Impaired fasting glucose and impaired glucose tolerance: implications for care. Diabetes Care, 30(3), 753.CrossRefGoogle Scholar
  17. 17.
    Monnier, L., Colette, C., Dunseath, G. J., & Owens, D. R. (2007). The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care, 30(2), 263–269.CrossRefGoogle Scholar
  18. 18.
    Bennett, C. M., Guo, M., & Dharmage, S. C. (2007). HbA(1c) as a screening tool for detection of type 2 diabetes: a systematic review. Diabetic Medicine, 24(4), 333–343.CrossRefGoogle Scholar
  19. 19.
    Tatsch, E., Bochi, G. V., Piva, S. J., Pereira, R. S., Kober, H., De Carvalho, J. A., Sangoi, M. B., Duarte, M. M., & Moresco, R. N. (2012). Hba(1c) as a tool for the diagnosis of type 2 diabetes: comparison with fasting glucose. Clinical Laboratory, 58(3–4), 347–350.Google Scholar
  20. 20.
    Guo, F., Moellering, D. R., & Garvey, W. T. (2014). Use of HbA1c for diagnoses of diabetes and prediabetes: comparison with diagnoses based on fasting and 2-hr glucose values and effects of gender, race, and age. Metabolic Syndrome and Related Disorders, 12(5), 258–268.CrossRefGoogle Scholar
  21. 21.
    Karakaya, J., Akin, S., Karagaoglu, E., & Gurlek, A. (2014). The performance of hemoglobin A1c against fasting plasma glucose and oral glucose tolerance test in detecting prediabetes and diabetes. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences, 19(11), 1051–1057.Google Scholar
  22. 22.
    Liu, Y., Xiao, X., Sun, C., Tian, S., Sun, Z., Gao, Y., Li, Y., Cheng, J., Lv, Y., Li, M., Li, Z., Zhang, Y., Wang, G., Liu, Y., Gao, Y., Zhu, L., Liu, Y., & Wang, G. I. (2016). Ideal glycated hemoglobin cut-off points for screening diabetes and prediabetes in a Chinese population. Journal of Diabetes Investigation, 7(5), 695–702.CrossRefGoogle Scholar
  23. 23.
    Vajravelu, M. E., & Lee, J. M. (2018). Identifying prediabetes and type 2 diabetes in asymptomatic youth: should HbA1c be used as a diagnostic approach? Current Diabetes Reports, 18(7), 43.CrossRefGoogle Scholar
  24. 24.
    Peters, A. L., Davidson, M. B., Schriger, D. L., & Hasselblad, V. (1996). A clinical approach for the diagnosis of diabetes mellitus: an analysis using glycosylated hemoglobin levels. Meta-analysis Research Group on the Diagnosis of Diabetes Using Glycated Hemoglobin Levels. JAMA, 276, 1246.CrossRefGoogle Scholar
  25. 25.
    Rohlfing, C. L., Little, R. R., Wiedmeyer, H. M., England, J. D., Madsen, R., Harris, M. I., Flegal, K. M., Eberhardt, M. S., & Goldstein, D. E. (2000). Use of GHb (HbA1c) in screening for undiagnosed diabetes in the U.S. population. Diabetes Care, 23, 187.CrossRefGoogle Scholar
  26. 26.
    Buell, C., Kermah, D., & Davidson, M. B. (2007). Utility of A1C for diabetes screening in the 1999 2004 NHANES population. Diabetes Care, 30(9), 2233–2235.CrossRefGoogle Scholar
  27. 27.
    Jeppsson, J. O., Kobold, U., Barr, J., Finke, A., Hoelzel, W., Hoshino, T., Miedema, K., Mosca, A., Mauri, P., Paroni, R., Thienpont, L., Umemoto, M., & Weykamp, C. (2002). Approved IFCC reference method for the measurement of HbA1c in human blood. Clinical Chemistry and Laboratory Medicine, 40(1), 78–89.CrossRefGoogle Scholar
  28. 28.
    Mosca, A., Paleari, R., Carobene, A., Weykamp, C., & Ceriotti, F. (2015). Performance of glycated hemoglobin (HbA1c) methods evaluated with EQAS studies using fresh whole blood samples: still space for improvements. Clinica Chimica Acta, 451, 305–309.CrossRefGoogle Scholar
  29. 29.
    Weykamp, C. W., Mosca, A., Gillery, P., & Panteghini, M. (2011). The analytical goals for hemoglobin A1c measurement in IFCC units and National Glycohemoglobin Standardization Program units are different. Clinical Chemistry, 57(8), 1204–1205.CrossRefGoogle Scholar
  30. 30.
    EurA1c Trial Group. (2018) EurA1c: the European HbA1c trial to investigate the performance of HbA1c assays in 2166 laboratories across 17 countries and 24 manufacturers by use of the IFCC model for quality targets. Clin Chem 64(8), 1183–1192.Google Scholar
  31. 31.
    Hare, M. J., Shaw, J. E., & Zimmet, P. Z. (2012). Current controversies in the use of haemoglobin A1c. Internal Medicine, 271(3), 227–236.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Muhittin A. Serdar
    • 1
    Email author
  • Mustafa Serteser
    • 1
  • Yasemin Ucal
    • 1
  • Hande F. Karpuzoglu
    • 1
  • Fehime B. Aksungar
    • 1
  • Abdurrahman Coskun
    • 1
  • Meltem Kilercik
    • 1
  • İbrahim Ünsal
    • 1
  • Aysel Özpınar
    • 1
  1. 1.Department of Medical Biochemistry and Acibadem Labmed LaboratoriesAcibadem Mehmet Ali Aydinlar University School of MedicineIstanbulTurkey

Personalised recommendations