Applied Biochemistry and Biotechnology

, Volume 189, Issue 4, pp 1056–1083 | Cite as

Pyrolysis Characteristics and Reaction Mechanisms of Pine Needles

  • Dongdong Zhang
  • Renming Pan
  • Ruiyu ChenEmail author
  • Xiaokang Xu


Pyrolysis has been considered as a promising method to utilize biomass by thermal cracking for energy or feedstock. In order to provide guidance for thermochemical process management of pine needle utilization by pyrolysis, the pyrolysis kinetics and reaction mechanism of one typical pine needle are investigated employing thermogravimetric analysis in nitrogen in the present study. Multi kinetics methods including model-free method and model-fitting method are adopted. Results indicate that one peak and three shoulders occur in the reaction rate curves. The maximum reaction rates decrease with the increasing of heating rates, and the average reaction rate of the whole process is 0.0021 K−1. The pyrolysis process of pine needles in nitrogen may be divided into four stages in the conversion rate range of 0~0.1, 0.1~0.5, 0.5~0.75, and 0.75~1, which may be mainly resulted by the reaction of the extractives, hemicellulose, cellulose, and lignin, respectively. The reaction mechanisms of stages I, II, and III may be regarded as random nucleation and nuclei growth, but the reaction mechanism of stage IV may be chemical reaction. The average value of activation energy and logarithm of the pre-exponential factor for the whole pyrolysis process is 215.99 kJ mol−1 and 38.75 min−1, respectively.


Renewable energy Biomass Pyrolysis  Thermogravimetry Kinetics Mechanism 


Funding Information

This work was sponsored by the National Natural Science Foundation of China (Nos. 51806106 and 51806202), Natural Science Foundation of Jiangsu Province, China (Nos. BK20170838 and BK20170820), and the Open Fund of the State Key Laboratory of Fire Science (SKLFS) Program (No. HZ2017-KF06).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ding, Y., Ezekoye, O. A., Zhang, J., Wang, C., & Lu, S. (2018). The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass. Fuel, 232, 147–153.CrossRefGoogle Scholar
  2. 2.
    Jiang, L., Zhang, D., Li, M., He, J. J., Gao, Z. H., Zhou, Y., & Sun, J. H. (2018). Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS. Fuel, 222, 11–20.CrossRefGoogle Scholar
  3. 3.
    Ding, Y., Ezekoye, O. A., Lu, S., Wang, C., & Zhou, R. (2017). Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood. Energy Conversion & Management, 132, 102–109.CrossRefGoogle Scholar
  4. 4.
    Liu, G., & Bao, J. (2019). Constructing super large scale cellulosic ethanol plant by decentralizing dry acid pretreatment technology into biomass collection depots. Bioresource Technology, 338–344.Google Scholar
  5. 5.
    Kalinoski, R. M., Flores, H. D., Thapa, S., Tuegel, E. R., Bilek, M. A., Reyes-Mendez, E. Y., West, M. J., Dumonceaux, T. J., & Canam, T. (2017). Pretreatment of hardwood and Miscanthus with Trametes versicolor for bioenergy conversion and densification strategies. Applied Biochemistry and Biotechnology, 183(4), 1–13.CrossRefGoogle Scholar
  6. 6.
    Arora, N., Patel, A., Pruthi, P. A., & Pruthi, V. (2016). Recycled de-oiled algal biomass extract as a feedstock for boosting biodiesel production from Chlorella minutissima. Applied Biochemistry and Biotechnology, 180(8), 1–8.CrossRefGoogle Scholar
  7. 7.
    Zhu, J., Rong, Y., Yang, J., Zhou, X., Xu, Y., Zhang, L., Chen, J., Yong, Q., & Yu, S. (2015). Integrated production of xylonic acid and bioethanol from acid-catalyzed steam-exploded corn stover. Applied Biochemistry and Biotechnology, 176(5), 1370–1381.CrossRefGoogle Scholar
  8. 8.
    Bioenergy. Available from
  9. 9.
    Lengowski, E. C., Nisgoski, S., Magalhães, W. L. E. D., Capobianco, G., Satyanarayana, K. G., & Muñiz, G. I. B. D. (2014). Characterization of Pinus sp of needle to assess their possible industrial applications. Journal of Biobased Materials & Bioenergy, 8(2), 192–201.CrossRefGoogle Scholar
  10. 10.
    Muñiz, G. I. B. d., Lengowski, E. C., Nisgoski, S., Magalhães, W. L. E. d., Oliveira, V. T. d., & Hansel, F. (2014). Characterization of Pinus spp needles and evaluation of their potential use for energy. Cerne, 20(2), 245–250.CrossRefGoogle Scholar
  11. 11.
    Ding, Y., Ezekoye, O. A., Lu, S., & Wang, C. (2016). Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Conversion & Management, 120, 370–377.CrossRefGoogle Scholar
  12. 12.
    Fernandez, A., Saffe, A., Pereyra, R., Mazza, G., & Rodriguez, R. (2016). Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis. Applied Thermal Engineering, 106, 1157–1164.CrossRefGoogle Scholar
  13. 13.
    Statheropoulos, M., Liodakis, S., Tzamtzis, N., Pappa, A., & Kyriakou, S. (1997). Thermal degradation of Pinus halepnsis pine needles using various analytical methods. Journal of Analytical and Applied Pyrolysis, 43(2), 115–123.CrossRefGoogle Scholar
  14. 14.
    Niu, H. (2014). Study on pyrolysis kinetics and combustibility of forest fuel. PhD, University of Science and Technology of China.Google Scholar
  15. 15.
    Varma, A. K., & Mondal, P. (2016). Physicochemical characterization and kinetic study of pine needle for pyrolysis process. Journal of Thermal Analysis & Calorimetry, 124(1), 487–497.CrossRefGoogle Scholar
  16. 16.
    Fateh, T., Richard, F., Zaida, J., Rogaume, T., & Joseph, P. (2016). Multi-scale experimental investigations of the thermal degradation of pine needles. Fire & Materials, 41(6), 654–674.CrossRefGoogle Scholar
  17. 17.
    Li, K. Y., Huang, X., Fleischmann, C., Rein, G., & Ji, J. (2014). Pyrolysis of medium-density fiberboard: Optimized search for kinetics scheme and parameters via a genetic algorithm driven by Kissinger’s method. Energy & Fuels, 28(9), 6130–6139.CrossRefGoogle Scholar
  18. 18.
    Kissinger, H. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29, 1702–1706.CrossRefGoogle Scholar
  19. 19.
    Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part C Polymer Letters, 4(5), 323–328.CrossRefGoogle Scholar
  20. 20.
    Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38(11), 1881–1886.CrossRefGoogle Scholar
  21. 21.
    Doyle, C. (1961). Kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science, 5(15), 285–292.CrossRefGoogle Scholar
  22. 22.
    Kissinger, H. E. (1956). Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57, 217–221.CrossRefGoogle Scholar
  23. 23.
    Akahira, T., & Sunose, T. (1971). Joint convention of four electrical institutes. Environmental Science & Technology, 16, 22–31.Google Scholar
  24. 24.
    Murray, P., & White, J. (1955). Kinetics of the thermal dehydration of clays. Part IV. Interpretation of the differential thermal analysis of the clay minerals. Trans J Brit Ceram Soc, 54, 204–238.Google Scholar
  25. 25.
    Coats, A., & Redfern, J. (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68–69.CrossRefGoogle Scholar
  26. 26.
    Sergey, B., Alan, K., Criado, M. J., Perezmaqueda, A. L., Popescu, & Crisan. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520(1–2), 1–19.Google Scholar
  27. 27.
    Chen, D. Y., Yan, Z., & Zhu, X. F. (2013). In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: Kinetic analysis for the drying and devolatilization stages. Bioresource Technology, 131(3), 40–46.CrossRefGoogle Scholar
  28. 28.
    Grønli, M. G., Várhegyi, G., & Blasi, C. D. (2002). Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research, 41(17), 4201–4208.CrossRefGoogle Scholar
  29. 29.
    Debiagi, P. E. A., Pecchi, C., Gentile, G., Frassoldati, A., Cuoci, A., Faravelli, T., & Ranzi, E. (2015). Extractives extend the applicability of multistep kinetic scheme of biomass pyrolysis. Energy & Fuels, 29(10), 6544–6555.CrossRefGoogle Scholar
  30. 30.
    Ebringerová, A., Hromádková, Z., & Heinze, T. (2005). Hemicellulose. Advances in Polymer Science, 1–67.Google Scholar
  31. 31.
    Qiu, X., & Hu, S. (2013). “Smart” materials based on cellulose: A review of the preparations, properties, and applications. Materials, 6(3), 738–781.CrossRefGoogle Scholar
  32. 32.
    Yang, H., Rong, Y., Chen, H., Zheng, C., & Liang, D. T. (2011). In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy & Fuels, 20(1), 388–393.CrossRefGoogle Scholar
  33. 33.
    Ammar, K., & Flanagan, D. R. (2010). Solid-state kinetic models: Basics and mathematical fundamentals. Journal of Physical Chemistry B, 110(35), 17315–17328.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations