Advertisement

Applied Biochemistry and Biotechnology

, Volume 189, Issue 3, pp 787–797 | Cite as

Enzymatic Pretreatment of Microalgae: Cell Wall Disruption, Biomass Solubilisation and Methane Yield Increase

  • Olivia CórdovaEmail author
  • Fabiana Passos
  • Rolando Chamy
Article
  • 164 Downloads

Abstract

Anaerobic digestion of microalgal biomass for biogas production may be limited due to the cell wall resulting in an inefficient bioconversion. Enzymatic pretreatments are applied for inducing cell damage/lysis and organic matter solubilisation and this way increasing biogas production. We evaluated enzymatic pretreatments in different conditions for comparing in relation to cell wall rupture, increase of soluble material and increase in biogas production through anaerobic digestion performance in BMP assay. Chlorella sorokiniana cultures were subjected to three different enzymatic pretreatments, each under four different conditions of enzyme/substrate ratio, pH and application time. The results showed increases over 21% in biogas productions for all enzymatic pretreatments. Enzymatic pretreatment was effective at damaging microalgae cell wall, releasing organic compounds and increasing the rate and final methane yield in BMP tests. We observed a synergistic activity between the mixtures enzymes, which would depend on operational conditions used for each pretreatment.

Keywords

Microalgae Anaerobic digestion Biogas Enzymes Pretreatment Synergistic activity 

Notes

Author Contributions

OC conceived the study, designed, and performed the experiments, evaluated the data and drafted the manuscript. FP evaluated the data and drafted the manuscript. RC supervised the work and assisted in drafting the manuscript. All authors read and approved the final manuscript.

Funding Information

The authors want to thank Pontificia Universidad Católica de Valparaiso for the financial support. Olivia Córdova appreciates her scholarship funded by the CONICYT, Beca Nacional Doctorado, 21121012.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bohutskyi, P., & Bouwer, E. (2013). Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In W. J. Lee (Ed.), Adv. Biofuels Bioprod (pp. 873–975). New York, NY: Springer New York.  https://doi.org/10.1007/978-1-4614-3348-4_36. CrossRefGoogle Scholar
  2. 2.
    Zamalloa, C., Vulsteke, E., Albrecht, J., & Verstraete, W. (2011). The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresource Technology, 102(2), 1149–1158.  https://doi.org/10.1016/j.biortech.2010.09.017.CrossRefPubMedGoogle Scholar
  3. 3.
    Ward, A. J., Lewis, D. M., & Green, F. B. (2014). Anaerobic digestion of algae biomass: a review. Algal Research, 5, 204–214.  https://doi.org/10.1016/j.algal.2014.02.001.CrossRefGoogle Scholar
  4. 4.
    González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Impact of microalgae characteristics on their conversion to biofuel. Part I: focus on cultivation and biofuel production. Biofuels, Bioprod. Biorefining., 6, 246–256.  https://doi.org/10.1002/bbb.CrossRefGoogle Scholar
  5. 5.
    González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels, Bioprod. Biorefining, 6, 205–218.  https://doi.org/10.1002/bbb.CrossRefGoogle Scholar
  6. 6.
    Angelidaki, I., & Batstone, D. J. (2010). Anaerobic digestion. In Solid Waste Technology and Management, 1(2), 583–600.Google Scholar
  7. 7.
    Mendez, L., Mahdy, A., Timmers, R. A., Ballesteros, M., & González-Fernández, C. (2013). Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresource Technology, 149, 136–141.  https://doi.org/10.1016/j.biortech.2013.08.136.CrossRefPubMedGoogle Scholar
  8. 8.
    Passos, F., Uggetti, E., Carrère, H., & Ferrer, I. (2014). Pretreatment of microalgae to improve biogas production: a review. Bioresource Technology, 172, 403–412.  https://doi.org/10.1016/j.biortech.2014.08.114.CrossRefPubMedGoogle Scholar
  9. 9.
    Córdova, O., Santis, J., Ruiz-Fillipi, G., Zuñiga, M. E., Fermoso, F. G., & Chamy, R. (2018). Microalgae digestive pretreatment for increasing biogas production. Renewable and Sustainable Energy Reviews, 82, 2806–2813.  https://doi.org/10.1016/j.rser.2017.10.005.CrossRefGoogle Scholar
  10. 10.
    Yin, L. J., Jiang, S. T., Pon, S. H., & Lin, H. H. (2010). Hydrolysis of chlorella by Cellulomonas sp. YJ5 cellulases and its biofunctional properties. Journal of Food Science, 75(9), H317–H323.  https://doi.org/10.1111/j.1750-3841.2010.01867.x.CrossRefPubMedGoogle Scholar
  11. 11.
    Chen, C. Y., Der Bai, M., & Chang, J. S. (2013). Improving microalgal oil collecting efficiency by pretreating the microalgal cell wall with destructive bacteria. Biochemical Engineering Journal, 81, 170–176.  https://doi.org/10.1016/j.bej.2013.10.014.CrossRefGoogle Scholar
  12. 12.
    Muñoz, C., Hidalgo, C., Zapata, M., Jeison, D., Riquelme, C., & Rivas, M. (2014). Use of cellulolytic marine bacteria for enzymatic pretreatment in microalgal biogas production. Applied and Environmental Microbiology, 80(14), 4199–4206.  https://doi.org/10.1128/AEM.00827-14.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yun, Y. M., Kim, D. H., Oh, Y. K., Shin, H. S., & Jung, K. W. (2014). Application of a novel enzymatic pretreatment using crude hydrolytic extracellular enzyme solution to microalgal biomass for dark fermentative hydrogen production. Bioresource Technology, 159, 365–372.  https://doi.org/10.1016/j.biortech.2014.02.129.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang, Y. H. P., & Lynd, L. R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnology and Bioengineering, 88(7), 797–824.  https://doi.org/10.1002/bit.20282.CrossRefPubMedGoogle Scholar
  15. 15.
    Yang, B., Dai, Z., Ding, S.-Y., & Wyman, C. E. (2014). Enzymatic hydrolysis of cellulosic biomass. Biofuels., 2(4), 421–449.  https://doi.org/10.4155/bfs.11.116.CrossRefGoogle Scholar
  16. 16.
    APHA-AWWA-WPCF, Standard methods for the examination of water and wastewater, (20th Ed.)Washingt. (1999).Google Scholar
  17. 17.
    Percival Zhang, Y. H., Himmel, M. E., & Mielenz, J. R. (2006). Outlook for cellulase improvement: screening and selection strategies. Biotechnology Advances, 24(5), 452–481.  https://doi.org/10.1016/j.biotechadv.2006.03.003.CrossRefPubMedGoogle Scholar
  18. 18.
    Thomas, L., Joseph, A., & Gottumukkala, L. D. (2014). Xylanase and cellulase systems of Clostridium sp.: an insight on molecular approaches for strain improvement. Bioresource Technology, 158, 343–350.  https://doi.org/10.1016/j.biortech.2014.01.140.CrossRefPubMedGoogle Scholar
  19. 19.
    Passos, F., Hom-Diaz, A., Blanquez, P., Vicent, T., & Ferrer, I. (2016). Improving biogas production from microalgae by enzymatic pretreatment. Bioresource Technology, 199, 347–351.  https://doi.org/10.1016/j.biortech.2015.08.084.CrossRefPubMedGoogle Scholar
  20. 20.
    Mahdy, A., Ballesteros, M., & González-Fernández, C. (2016). Enzymatic pretreatment of Chlorella vulgaris for biogas production: influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency. Bioresource Technology, 199, 319–325.  https://doi.org/10.1016/j.biortech.2015.08.080.CrossRefPubMedGoogle Scholar
  21. 21.
    He, S., Fan, X., Katukuri, N. R., Yuan, X., Wang, F., & Guo, R. B. (2016). Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment. Bioresource Technology, 204, 145–151.  https://doi.org/10.1016/j.biortech.2015.12.073.CrossRefPubMedGoogle Scholar
  22. 22.
    Córdova, O., Passos, F., & Chamy, R. (2018). Physical pretreatment methods for improving microalgae anaerobic biodegradability. Applied Biochemistry and Biotechnology, 185(1), 114–126.  https://doi.org/10.1007/s12010-017-2646-6.CrossRefPubMedGoogle Scholar
  23. 23.
    Sato, M., Murata, Y., Mizusawa, M., Iwahashi, H., & Oka, S. (2004). A simple and rapid dual-fluorescence viability assay for microalgae. Microbiology and Culture Collections, 20, 53–59 http://www.jscc-home.jp/journal/No20_2/No20_2_53.pdf.Google Scholar
  24. 24.
    Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., & van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 59(5), 927–934.  https://doi.org/10.2166/wst.2009.040.CrossRefPubMedGoogle Scholar
  25. 25.
    Donoso-Bravo, A., Pérez-Elvira, S. I., & Fdz-Polanco, F. (2010). Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chemical Engineering Journal, 160(2), 607–614.  https://doi.org/10.1016/j.cej.2010.03.082.CrossRefGoogle Scholar
  26. 26.
    Doncaster, C. P., & Davey, A. J. H. (2007). Analysis of variance and covariance: how to choose and construct models for the life sciences.  https://doi.org/10.1017/CBO9780511611377.CrossRefGoogle Scholar
  27. 27.
    Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology, 35(5), 377–391.  https://doi.org/10.1007/s10295-008-0327-8.CrossRefGoogle Scholar
  28. 28.
    Moraïs, S., Barak, Y., Caspi, J., & Hadar, Y. (2010). Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio., 1, 3–10.  https://doi.org/10.1128/mBio.00285-10.Editor.CrossRefGoogle Scholar
  29. 29.
    Gruber-Brunhumer, M. R., Jerney, J., Zohar, E., Nussbaumer, M., Hieger, C., Bochmann, G., Schagerl, M., Obbard, J. P., Fuchs, W., & Drosg, B. (2015). Acutodesmus obliquus as a benchmark strain for evaluating methane production from microalgae: influence of different storage and pretreatment methods on biogas yield. Algal Research, 12, 230–238.  https://doi.org/10.1016/j.algal.2015.08.022.CrossRefGoogle Scholar
  30. 30.
    Ometto, F., Quiroga, G., Psenicka, P., Whitton, R., Jefferson, B., & Villa, R. (2014). Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Research, 65, 350–361.  https://doi.org/10.1016/j.watres.2014.07.040.CrossRefPubMedGoogle Scholar
  31. 31.
    Merino, S. T., & Cherry, J. (2007). Progress and challenges in enzyme development for biomass utilization. Advances in Biochemical Engineering/Biotechnology, 108, 95–120.  https://doi.org/10.1007/10_2007_066.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratorio de Biotecnología Ambiental, Escuela de Ingeniería en Bioquímica, Facultad de IngenieríaPontificia Universidad Católica de ValparaísoValparaisoChile
  2. 2.Department of Sanitary and Environmental EngineeringFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations