Advertisement

Applied Biochemistry and Biotechnology

, Volume 189, Issue 3, pp 810–821 | Cite as

Improved Stress Tolerance of Saccharomyces cerevisiae by CRISPR-Cas-Mediated Genome Evolution

  • Ryosuke Mitsui
  • Ryosuke YamadaEmail author
  • Hiroyasu Ogino
Article

Abstract

In bioprocesses, a microorganism with high tolerance to various stresses would be advantageous for efficient bio-based chemical production. Yeast Saccharomyces cerevisiae has long been used in the food industry because of its safety and convenience, and genetically engineered S. cerevisiae strains have been constructed and used for the production of various bio-based chemicals. In this study, we developed a novel genome shuffling method for S. cerevisiae using CRISPR-Cas. By using this, the thermotolerant mutant strain T8-292, which can grow well at 39 °C, was successfully created. The strain also showed higher cell viability in low pH and high ethanol concentration. In addition, the differences in genome structure between mutant and parent strains were suggested by random amplified polymorphic DNA PCR method. Our genome shuffling method could be a promising strategy for improvement of various stress tolerance in S. cerevisiae.

Keywords

CRISPR-Cas δ sequence DNA repair Genome shuffling Saccharomyces cerevisiae Stress tolerance 

Notes

Acknowledgments

This work was partly supported by the Japan Society for the Promotion of Science KAKENHI (grant number JP18K14069) and KAKENHI Specific Support Operation of Osaka Prefecture University to RY.

Supplementary material

12010_2019_3040_MOESM1_ESM.docx (112 kb)
ESM 1 (DOCX 111 kb)

References

  1. 1.
    Nevoigt, E. (2008). Progress in Metabolic Engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 72(3), 379–412.PubMedGoogle Scholar
  2. 2.
    Ostergaard, S., Olsson, L., & Nielsen, J. (2000). Metabolic Engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 64(1), 34–50.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Abdel-Banat, B. M. A., Hoshida, H., Ano, A., Nonklang, S., & Akada, R. (2010). High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Applied Microbiology and Biotechnology, 85(4), 861–867.PubMedGoogle Scholar
  4. 4.
    Gao, L., Liu, Y., Sun, H., Li, C., Zhao, Z., & Liu, G. (2016). Advances in mechanisms and modifications for rendering yeast thermotolerance. Journal of Bioscience and Bioengineering, 121(6), 599–606.PubMedGoogle Scholar
  5. 5.
    Doğan, A., Demirci, S., Aytekin, A. Ö., & Şahin, F. (2014). Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Applied Biochemistry and Biotechnology, 174(1), 28–42.PubMedGoogle Scholar
  6. 6.
    Steensels, J., Snoek, T., Meersman, E., Nicolino, M. P., Voordeckers, K., & Verstrepen, K. J. (2014). Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiology Reviews, 38(5), 947–995.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Sridhar, M., Sree, N. K., & Rao, L. V. (2002). Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 and VS3 strains. Bioresource Technology, 83(3), 199–202.PubMedGoogle Scholar
  8. 8.
    Abe, H., Fujita, Y., Takaoka, Y., Kurita, E., Yano, S., Tanaka, N., & Nakayama, K. (2009). Ethanol-tolerant Saccharomyces cerevisiae strains isolated under selective conditions by over-expression of a proofreading-deficient DNA polymerase δ. Journal of Bioscience and Bioengineering, 108(3), 199–204.PubMedGoogle Scholar
  9. 9.
    Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P. C., & del Cardayre, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature., 415(6872), 644–646.PubMedGoogle Scholar
  10. 10.
    Shi, D., Wang, C., & Wang, K. (2009). Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. Journal of Industrial Microbiology & Biotechnology, 36(1), 139–147.Google Scholar
  11. 11.
    Paques, F., & Haber, J. E. (1999). Microbiology and Molecular Biology Reviews, 63, 349–404.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Cameron, J. R., Loh, E. Y., & Davis, R. W. (1979). Evidence for transposition of dispersed repetitive DNA families in yeast. Cell., 16(4), 739–751.PubMedGoogle Scholar
  13. 13.
    Atienzar, F. A., & Jha, A. N. (2006). The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutation Research, 613(2-3), 76–102.PubMedGoogle Scholar
  14. 14.
    Xu, K., Ren, C., Liu, Z., Zhang, T., Zhang, T., Li, D., Wang, L., Yan, Q., Guo, L., Shen, J., & Zhang, Z. (2015). Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus. Cellular and Molecular Life Sciences, 72(2), 383–399.PubMedGoogle Scholar
  15. 15.
    Chen, D. C., Yang, B. C., & Kuo, T. T. (1992). One-step transformation of yeast in stationary phase. Current Genetics, 21(1), 83–84.PubMedGoogle Scholar
  16. 16.
    Yamada, R., Wakita, K., & Ogino, H. (2017). Global metabolic engineering of glycolytic pathway via multicopy integration in Saccharomyces cerevisiae. ACS Synthetic Biology, 6(4), 659–666.PubMedGoogle Scholar
  17. 17.
    Couto, M. M. B., van der Vossen, J. M. B. M., Hofstra, H., & Huis in’t Veld, J. H. J. (1994). RAPD analysis: a rapid technique for differentiation of spoilage yeasts. International Journal of Food Microbiology, 24(1-2), 249–−260.Google Scholar
  18. 18.
    Rasband, W. S. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997–2018. Accessed in 2016.
  19. 19.
    Li, J., Wang, S., VanDusen, W. J., Schultz, L. D., George, H. A., Herber, W. K., Chae, H. J., Bentley, W. E., & Rao, G. (2000). Green fluorescent protein in Saccharomyces cerevisiae: real-time studies of theGAL1 promoter. Biotechnology and Bioengineering, 70(2), 187–196.PubMedGoogle Scholar
  20. 20.
    Caspeta, L., Chen, Y., Ghiaci, P., Feizi, A., Buskov, S., Hallström, B. M., Petranovic, D., & Nielsen, J. (2014). Altered sterol composition renders yeast thermotolerant. Science., 346(6205), 75–78.PubMedGoogle Scholar
  21. 21.
    Jasin, M., & Rothstein, R. (2013). Repair of strand breaks by homologous recombination. Cold Spring Harbor Perspectives in Biology, 5(11), a012740.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Lieber, M. R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry, 79, 181–211.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kraus, E., Leung, W. Y., & Haber, J. E. (2001). Break-induced replication: a review and an example in budding yeast. PNAS., 98(15), 8255–8262.PubMedGoogle Scholar
  24. 24.
    Williamson, V. M. (1983). Transposable elements in yeast. International Review of Cytology, 83, 1–25.PubMedGoogle Scholar
  25. 25.
    Wilke, C. M., & Adams, A. (1992). Fitness effects of Ty transposition in Saccharomyces cerevisiae. Genetics., 131(1), 31–42.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Ma, M., & Liu, Z. L. (2010). Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 87(3), 829–845.PubMedGoogle Scholar
  27. 27.
    Caspeta, L., Castillo, T., & Nielsen, J. (2015). Frontiers in Bioengineering and Biotechnology, 3, 184.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Stanley, D., Bandara, A., Fraser, S., Chambers, P. J., & Stanley, G. A. (2010). The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. Journal of Applied Microbiology, 109(1), 13–24.PubMedGoogle Scholar
  29. 29.
    Kitichantaropas, Y., Boonchird, C., Sugiyama, M., Kaneko, Y., Harashima, S., & Auesukaree, C. (2016). Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation. AMB Express, 6(1), 107.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Carmelo, V., Bogaerts, P., & Sá-Correia, I. (1996). Activity of plasma membrane H + -ATPase and expression of PMA1 and PMA2 genes in S accharomyces cerevisiae cells grown at optimal and low pH. Archives of Microbiology, 166(5), 315–320.PubMedGoogle Scholar
  31. 31.
    Andrighetto, C., Psomas, E., Tzanetakis, N., Suzzi, G., & Lombardi, A. (2000). Randomly amplified polymorphic DNA (RAPD) PCR for the identification of yeasts isolated from dairy products. Letters in Applied Microbiology, 30(1), 5–9.PubMedGoogle Scholar
  32. 32.
    Cenis, J. L. (1993). Identification of Four MajorMeloidogynespp. by Random Amplified Polymorphic DNA (RAPD-PCR). American Physical Society, 83(1), 76–80.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemical EngineeringOsaka Prefecture UniversityOsakaJapan

Personalised recommendations