Applied Biochemistry and Biotechnology

, Volume 189, Issue 3, pp 822–833 | Cite as

Potential Application and Bactericidal Mechanism of Lactic Acid–Hydrogen Peroxide Consortium

  • Chenchen Zhang
  • Susu Zhang
  • Wei Liu
  • Tingting Guo
  • Ruixia Gu
  • Jian KongEmail author


It has been found that lactic acid and hydrogen peroxide (H2O2) displayed co-operatively enhanced killing activity to pathogens. The synergistic effect was investigated with using several microbe species, suggesting that low concentration of lactic acid and H2O2 could kill both Gram-negative and Gram-positive bacteria or even fungal pathogens. To explore the mechanism of synergistic sterilization of lactic acid and H2O2, Escherichia coli DH5α was used as the indicator bacteria. Lactic acid and H2O2 could generate hydroxyl radicals depending on the intracellular iron ions. The genomic DNA of treated cells was fractured and dispersed, and the △recA strain was more susceptive to the treatment, indicating that DNA damage was a cause of cell death. Furthermore, serious leakage of cell contents occurred in the treated cell, suggesting that the treatment also resulted in cell membrane permeability changes. This research shows that lactic acid-H2O2 consortium is a hopeful safety bactericide in agriculture or food production processes and provides a greater understanding of the mechanism of synergistic sterilization of lactic acid-H2O2 consortium in vivo.


Lactic acid Hydrogen peroxide Broad spectrum Intracellular iron ions Genomic DNA damage Membrane permeability 


Funding Information

This work was supported by the National Natural Science Foundation of China (No. 31801565), the National Key Research and Development Program of China (2017YFD0400300), and the Natural Science Foundation of Jiangsu Province (CN) (BK20180910).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lavermicocca, P., Valerio, F., & Visconti, A. (2003). Antifungal activity of phenyllactic acid against molds isolated from bakery products. Applied and Environmental Microbiology, 69(1), 634–640.CrossRefGoogle Scholar
  2. 2.
    Linley, E., Denyer, S. P., Mcdonnell, G. E., Simons, C., & Maillard, J. (2012). Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. Journal of Antimicrobial Chemotherapy, 67(7), 1589–1596.CrossRefGoogle Scholar
  3. 3.
    Imlay, J. A., & Linn, S. (1986). Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. Journal of Bacteriology, 166(2), 519–527.CrossRefGoogle Scholar
  4. 4.
    Bienert, G. P., Schjoerring, J. K., & Jahn, T. P. (2006). Membrane transport of hydrogen peroxide. Biochimica et Biophysica Acta, 1758(8), 994–1003.CrossRefGoogle Scholar
  5. 5.
    Moller, M. N., & Denicola, A. (2018). Diffusion of nitric oxide and oxygen in lipoproteins and membranes studied by pyrene fluorescence quenching. Free Radical Biology and Medicine, 128, 137–143.CrossRefGoogle Scholar
  6. 6.
    Watt, B. E., Proudfoot, A. T., & Vale, J. A. (2004). Hydrogen peroxide poisoning. Toxicological Reviews, 23(1), 51–57.CrossRefGoogle Scholar
  7. 7.
    Atassi, F., & Servin, A. L. (2010). Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathog. FEMS Microbiology Letters, 304(1), 29–38.CrossRefGoogle Scholar
  8. 8.
    Huang, Y., & Chen, H. (2011). Effect of organic acids, hydrogen peroxide and mild heat on inactivation of Escherichia coli O157:H7 on baby spinach. Food Control, 22(8), 1178–1183.CrossRefGoogle Scholar
  9. 9.
    Reis, J. A., De Paula, A. T., Casarotti, S. N., & Penna, A. L. B. (2012). Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Engineering Reviews, 4(2), 124–140.CrossRefGoogle Scholar
  10. 10.
    Ozen, M., & Dinleyici, E. C. (2015). The history of probiotics: the untold story. Beneficial Microbes, 6(2), 159–165.CrossRefGoogle Scholar
  11. 11.
    Alakomi, H. L., Skytta, E., Saarela, M., Mattilasandholm, T., Latvakala, K., & Helander, I. M. (2000). Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Applied and Environmental Microbiology, 66(5), 2001–2005.CrossRefGoogle Scholar
  12. 12.
    Fenton, H. J. H. (1894). LXXIII.—oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65(0), 899–910.CrossRefGoogle Scholar
  13. 13.
    Ali, M. A., Yasui, F., Matsugo, S., & Konishi, T. (2000). The lactate-dependent enhancement of hydroxyl radical generation by the Fenton reaction. Free Radical Research, 32(5), 429–438.CrossRefGoogle Scholar
  14. 14.
    Kowaltowski, A. J., & Vercesi, A. E. (1999). Mitochondrial damage induced by conditions of oxidative stress. Free Radical Biology & Medicine, 26(3-4), 463–471.CrossRefGoogle Scholar
  15. 15.
    Sieuwerts, S., de Bok, F. A., Mols, E., de vos, W. M., & Vlieg, J. E. (2008). A simple and fast method for determining colony forming units. Letters in Applied Microbiology, 47(4), 275–278.CrossRefGoogle Scholar
  16. 16.
    Gourama, H., & Bullerman, L. B. (1995). Relationship between aflatoxin production and mold growth as measured by ergosterol and plate count. LWT- Food Science and Technology, 28(2), 185–189.CrossRefGoogle Scholar
  17. 17.
    Qin, M., Lin, Z., Wang, D., Long, X., Zheng, M., & Qiu, Y. (2016). What are the differences between aerobic and anaerobic toxic effects of sulfonamides on Escherichia coli ? Environmental Toxicology and Pharmacology, 41, 251–258.CrossRefGoogle Scholar
  18. 18.
    Gomes, A., Fernandes, E., & Lima, J. L. (2005). Fluorescence probes used for detection of reactive oxygen species. Journal of Biochemical and Biophysical Methods, 65(2-3), 45–80.CrossRefGoogle Scholar
  19. 19.
    Sagrista, M. L., Garcia, A. E., Africa De Madariaga, M., & Mora, M. (2002). Antioxidant and pro-oxidant effect of the thiolic compounds N-acetyl-l-cysteine and glutathione against free radical-induced lipid peroxidation. Free Radical Research, 36(3), 329–340.CrossRefGoogle Scholar
  20. 20.
    Lee, P. Y., Costumbrado, J., Hsu, C. & Kim, Y. H. (2012). Agarose gel electrophoresis for the separation of DNA fragments. Journal of Visualized Experiments, 20(62), e3923–e3923. Google Scholar
  21. 21.
    Zhang, C., Xin, Y., Wang, Y., Guo, T., Lu, S., & Kong, J. (2015). Identification of a novel dye-decolorizing peroxidase, EfeB, translocated by a twin-arginine translocation system in Streptococcus thermophilus CGMCC 7.179. Applied and Environmental Microbiology, 81(18), 6108–6119.CrossRefGoogle Scholar
  22. 22.
    Cherepanov, P. P., & Wackernagel, W. (1995). Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene, 158(1), 9–14.CrossRefGoogle Scholar
  23. 23.
    Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6640–6645.CrossRefGoogle Scholar
  24. 24.
    Arroyo, E., Enriquez, L., Sanchez, A., Ovalle, M., & Olivas, A. (2014). Scanning electron microscopy of bacteriaTetrasphaera duodecadis. Scanning, 36(5), 547–550.CrossRefGoogle Scholar
  25. 25.
    Balciunas, E. M., Martinez, F. A. C., Todorov, S. D., Franco, B. D. G. D. M., Converti, A., & Oliveira, R. P. D. S. (2013). Novel biotechnological applications of bacteriocins: a review. Food Control, 32(1), 134–142.CrossRefGoogle Scholar
  26. 26.
    Singh, S., & Shalini, R. (2016). Effect of hurdle technology in food preservation: a review. Critical Reviews in Food Science and Nutrition, 56(4), 641–649.CrossRefGoogle Scholar
  27. 27.
    Bell, C. E. (2005). Structure and mechanism of Escherichia coli RecA ATPase. Molecular Microbiology, 58(2), 358–366.CrossRefGoogle Scholar
  28. 28.
    Lushchak, V. I. (2011). Toxicology & pharmacology : CBP, 153, 175–190.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chenchen Zhang
    • 1
    • 2
  • Susu Zhang
    • 3
  • Wei Liu
    • 3
  • Tingting Guo
    • 3
  • Ruixia Gu
    • 1
    • 2
  • Jian Kong
    • 3
    Email author
  1. 1.College of Food Science and EngineeringYangzhou UniversityYangzhouPeople’s Republic of China
  2. 2.Jiangsu Provincial Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouPeople’s Republic of China
  3. 3.State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoPeople’s Republic of China

Personalised recommendations