Applied Biochemistry and Biotechnology

, Volume 189, Issue 2, pp 556–575 | Cite as

Polyhydroxybutyrate/Chitosan 3D Scaffolds Promote In Vitro and In Vivo Chondrogenesis

  • Maria GiretovaEmail author
  • Lubomir Medvecky
  • Eva Petrovova
  • Dasa Cizkova
  • Jan Danko
  • Dagmar Mudronova
  • Lucia Slovinska
  • Radovan Bures


The articular cartilage is an avascular and aneural tissue and its injuries result mostly in osteoarthritic changes and formation of fibrous tissue. Efforts of scientists worldwide are focused on restoration of cartilage with increase in life quality of patients. Novel polymeric polyhydroxybutyrate/chitosan (PCH) porous 3D scaffolds were developed and characterized. The rat mesenchymal stem cells (MSCs) were seeded in vitro on PCH scaffolds by a simple filtration of MSCs suspension over scaffolds using syringe. The chondrogenesis of cell-scaffold constructs was carried out in supplemented chondrogenic cultivation medium. After 2 and 4 weeks of in vitro culturing cell-scaffold constructs in chondrogenic differentiation medium, the cartilage extracellular matrix components like glycosaminoglycans and collagens were identified in scaffolds by biochemical assays and histological and immunohistochemical staining. Preliminary in vivo experiments with acellular scaffolds, which filled the artificially created cartilage defect in sheep knee were done and evaluated. Cells released from the bone marrow cavity have penetrated into acellular PCH scaffold in cartilage defect and induced tissue formation similar to hyaline cartilage. The results demonstrated that PCH scaffolds supported chondrogenic differentiation of MSCs in vitro. Acellular PCH scaffolds were successfully utilized in vivo for reparation of artificially created knee cartilage defects in sheep and supported wound healing and formation of hyaline cartilage-like tissue.


Mesenchymal stem cells Chitosan Polyhydroxybutyrate In vitro In vivo Chondrogenesis 



This work was supported by the Slovak Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences, Project No. 2/0047/17 and within the framework of the project “Centre of excellence of biomedicine technologies,” which is supported by the Operational Program “Research and Development” financed through the European Regional Development Fund.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2019_3021_MOESM1_ESM.jpg (383 kb)
ESM 1 (JPG 382 kb)
12010_2019_3021_MOESM2_ESM.jpg (2.5 mb)
ESM 2 (JPG 2570 kb)
12010_2019_3021_MOESM3_ESM.jpg (358 kb)
ESM 3 (JPG 358 kb)
12010_2019_3021_MOESM4_ESM.jpg (516 kb)
ESM 4 (JPG 515 kb)
ESM 5 (JPG 271 kb)
12010_2019_3021_MOESM6_ESM.docx (25 kb)
ESM 6 (DOCX 25 kb)


  1. 1.
    Hunziker, E. B. (2011). Articular cartilage repair: basic science and clinical progress. A review of the current status and prospect. Osteoarthritis and Cartilage, 10, 432–463.CrossRefGoogle Scholar
  2. 2.
    Zhu, Y., Song, K., Jiang, S., Chen, J., Tang, L., Li, S., Fan, J., Wang, Y., Zhao, J., & Liu, T. (2017). Numerical simulation of mass transfer and three dimensional fabrication of tissue-engineered cartilages based on chitosan/gelatin hybrid hydrogel scaffold in a rotating bioreactor. Applied Biochemistry and Biotechnology, 181(1), 250–266. Scholar
  3. 3.
    Mollon, B., Kandel, R., Chahal, J., & Theodoropoulos, J. (2013). The clinical status of cartilage tissue regeneration in humans. Osteoarthritis Cart, 21(12), 1824–1833.CrossRefGoogle Scholar
  4. 4.
    Puppi, D., Chiellini, F., Piras, A. M., & Chiellini, E. (2010). Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 35(4), 403–440.CrossRefGoogle Scholar
  5. 5.
    Kessler, M. W., & Grande, D. A. (2008). Review tissue engineering and cartilage. Organogenesis., 4(1), 28–32.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tang, X., Fan, L., Pei, M., Zeng, L., & Ge, Z. (2015). Evolving concepts of chondrogenic differentiation: history, state of the art and future perspectives. European Cells & Materials, 30, 12–27. Scholar
  7. 7.
    Solchaga, L. A., Penick, K. J., & Welter, J. F. (2011). Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks. Methods in Molecular Biology, 698, 253–278.CrossRefPubMedGoogle Scholar
  8. 8.
    Ehlers, E. M., Fuss, M., Rohwedel, J., Russlies, M., Kuehnel, W., & Behrens, P. (1999). Development of a biocomposite to fill out articular cartilage lesions. Light, scanning and transmission electron microscopy of sheep chondrocytes cultured on a collagen I/III sponge. Annals of Anatomy, 181(6), 513–518.CrossRefPubMedGoogle Scholar
  9. 9.
    Chen, G., Akahane, D., Kawazoe, N., Kamamoto, K., & Tateishi, T. (2008). Chondrogenic differentiation of mesenchymal stem cells in a leakproof collagen sponge. Materials Science and Engineering C, 28(1), 195–201.CrossRefGoogle Scholar
  10. 10.
    Gogolewski, S. (2000). Bioresorbable polymers in trauma and bone surgery. Injury., 31(4), 28–32.CrossRefPubMedGoogle Scholar
  11. 11.
    Deng, Y., Lin, X. S., Zheng, Z., Deng, J. G., Chen, J. C. H., Ma, H., & Chen, G. Q. (2003). Poly(hydroxybutyrate-co-hydroxyhexanoate) promoted production of extracellular matrix of articular cartilage chondrocytes in vitro. Biomaterials., 24(23), 4273–4281.CrossRefPubMedGoogle Scholar
  12. 12.
    Collins, M. N., & Birkinshaw, C. (2013). Hyaluronic acid based scaffolds for tissue engineering—a review. Carbohydrate Polymers, 92(2), 1262–1279.CrossRefPubMedGoogle Scholar
  13. 13.
    Cahú, T. B., Silva, R. A., Silva, R. P. F., et al. (2017). Evaluation of chitosan-based films containing gelatin, chondroitin 4-sulfate and ZNO for wound healing. Applied Biochemistry and Biotechnology, 183, 765. Scholar
  14. 14.
    Bingjun, Q., Jung, J., & Zhao, Y. (2015). Impact of acidity and metal ion on the antibacterial activity and mechanisms of β- and α-chitosan. Applied Biochemistry and Biotechnology, 175(6), 2972–2985. Scholar
  15. 15.
    Philibert, T., Lee, B. H., & Fabien, N. (2017). Current status and new perspectives on chitin and chitosan as functional biopolymers. Applied Biochemistry and Biotechnology, 181(4), 1314–1337. Scholar
  16. 16.
    Muzzarelli, R. A. A. (2009). Review chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers, 76(2), 167–182.CrossRefGoogle Scholar
  17. 17.
    Yang, B., Li, X. Y., Shi, S., Kong, X. Y., Guo, G., Huang, M. J., Luo, F., Wei, Y. Q., Zhao, X., & Qian, Z. Y. (2010). Preparation and characterization of a novel chitosan scaffold. Carbohydrate Polymers, 80(3), 860–865.CrossRefGoogle Scholar
  18. 18.
    Griffon, D. J., Sedighi, M. R., Schaefer, D. V., Eurell, J. A., & Johnson, A. L. (2006). Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomaterialia, 2(3), 313–320.CrossRefPubMedGoogle Scholar
  19. 19.
    Iwasaki, N., Kasahara, Y., Yamane, S., Igarashi, T., Minami, A., & Nisimura, S. (2001). Chitosan-based hyaluronic acid hybrid polymer fibers as a scaffold biomaterial for cartilage tissue engineering. Polymers., 3(1), 100–113. Scholar
  20. 20.
    Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan—a versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36(8), 981–1014.CrossRefGoogle Scholar
  21. 21.
    Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49(12), 832–864. Scholar
  22. 22.
    Coelho, D. S., Dias, P. F., Maraschin, M., Ribeiro-do-Valle, R. M., & Lopes-da-Silva, J. A. (2012). Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration. International Journal of Biological Macromolecules, 51, 343–350.CrossRefPubMedGoogle Scholar
  23. 23.
    Wang, Y., Bian, Y. Z., Wu, Q., & Chen, G. Q. (2008). Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials., 29(19), 2858–2868.CrossRefPubMedGoogle Scholar
  24. 24.
    Ye, C., Hu, P., Ma, M. X., Xiang, Y., Liu, R. G., & Shang, X. W. (2009). PHB/PHBHHX scaffolds and human adipose-derived stem cells for cartilage tissue engineering. Biomaterials., 30(26), 4401–4406.CrossRefPubMedGoogle Scholar
  25. 25.
    Ma, Z., Gao, C. H., Gong, Y., & Shen, J. (2003). Chondrocyte behaviors on poly-lactic acid (PLLA) membranes containing hydroxyl, amide or carboxyl groups. Biomaterials., 24(21), 3725–3730.CrossRefPubMedGoogle Scholar
  26. 26.
    Medvecky, L., Giretova, M., & Stulajterova, R. (2014). Properties and in vitro characterization of polyhydroxybutyrate-chitosan scaffolds prepared by modified precipitation method. Journal of Materials Science. Materials in Medicine, 25(3), 777–789.CrossRefPubMedGoogle Scholar
  27. 27.
    Giretova, M., Medvecky, L., Stulajterova, R., Sopcak, T., Briancin, J., & Kasiarova, M. (2016). Effect of enzymatic degradation of chitosan in polyhydroxybutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response. Journal of Materials Science. Materials in Medicine, 27(12), 181–197.CrossRefPubMedGoogle Scholar
  28. 28.
    Hoemann, C. D., Sun, J., Chrzanowski, V., & Buschmann, M. D. (2002). A multivalent assay to detect glycosaminiglycan, protein, RNA and DNA content in milligram samples of cartilage or hydrogel-based repair cartilage. Analytical Biochemistry, 300(1), 1–10.CrossRefPubMedGoogle Scholar
  29. 29.
    Edwards, C. A., & O’Brien, W. D. (1980). Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clinica Chimica Acta, 10, 161–167.CrossRefGoogle Scholar
  30. 30.
    Chen, Y. L., Lee, H. P., Chan, H. Y., Sung, L. Y., Chen, H. C. H., & Hu, Y. C. H. (2007). Composite chondroitin-6-sulfate/dermatan sulfate/chitosan scaffolds for cartilage tissue engineering. Biomaterials., 28(14), 2294–2305.CrossRefPubMedGoogle Scholar
  31. 31.
    Dhandayuthapani, B., Yoshida, Y., Maekawa, T., & Kumar, S. D. (2011). Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science, 19, Article ID 290602. Scholar
  32. 32.
    Godbey, W. T., Hindy, B. S. S., Sherman, M. E., & Atala, A. (2004). A novel use of centrifugal force for cell seeding into porous scaffolds. Biomaterials., 25(14), 2799–2805.CrossRefPubMedGoogle Scholar
  33. 33.
    Tan, L., Ren, Y., & Kuijer, R. (2012). A 1-min method for homogenous cell seeding in porous scaffolds. Journal of Biomaterials Applications, 26(7), 877–898. Scholar
  34. 34.
    Bornes, T. D., & Jomha, N. M. (2016). Mulet-Sierra A, Adesida AB. Optimal seeding densities for in vitro chondrogenesis of two- and three-dimensional-isolated and -expanded bone marrow-derived mesenchymal stromal stem cells within a porous collagen scaffold. Tissue Engineering. Part C, Methods, 22(3), 208–220.
  35. 35.
    Miot, S., Woodfield, T., Daniels, A. U., Suetterlin, R., Peterrschmitt, I., Hebere, M., Blitterswijk, C. A., Riesle, J., & Martin, I. (2005). Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition. Biomaterials., 26(15), 2479–2489.CrossRefPubMedGoogle Scholar
  36. 36.
    Yamane, S., Iwasaki, N., Majima, T., Fukanoshi, T., Masuko, T., Harada, K., Minam, A., Monde, K., & Nishimura, S. (2005). Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials., 26(6), 611–619.CrossRefPubMedGoogle Scholar
  37. 37.
    Yoo, H. S., Lee, E. A., Yoon, J. J., & Park, T. G. (2005). Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials., 26(14), 1925–1933.CrossRefPubMedGoogle Scholar
  38. 38.
    Matsiko, A., Gleeson, J., & O'Brien, F. J. (2015). Scaffold mean pore size influence mesenchymal stem cell chondrogenic differentiation and matrix deposition. Tissue Engineering Part A, 21(3–4), 486–497.CrossRefPubMedGoogle Scholar
  39. 39.
    Richardson, S. M., Curran, J. M., Chen, R., Vaughan-Thomas, A., Hunt, J. A., Freemont, A. J., & Hoyland, J. A. (2006). The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA) scaffolds. Biomaterials., 27(22), 4069–4078.CrossRefPubMedGoogle Scholar
  40. 40.
    Uematsu, K., Hattori, K., Ishimoto, Y., Yamauchi, J., Habata, T., Takakura, Y., Ohgushi, H., Fukuchi, T., & Sato, M. (2005). Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic glycolic acid (PLGA) scaffold. Biomaterials., 26(20), 4273–4279.CrossRefPubMedGoogle Scholar
  41. 41.
    Bhardwaj, N., Devi, D., & Mandal, B. B. (2015). Tissue-engineered cartilage: biomaterials, cells and stimulating factors. Macromolecular Bioscience, 15(2), 153–182.CrossRefPubMedGoogle Scholar
  42. 42.
    Alves Da Silva, M. L., Crawford, A., Mundy, J. M., Correlo, V. M., Sol, P., Bhattacharya, M., Hatton, P. V., Reis, R. L., & Neves, N. M. (2010). Chitosan/polyester-based scaffolds for cartilage tissue engineering: assesment of extracellular matrix formation. Acta Biomaterialia, 6, 1149–1157.CrossRefPubMedGoogle Scholar
  43. 43.
    Temenoff, J. S., & Mikos, A. G. (2000). Review: tissue engineering for regeneration of articular cartilage. Biomaterials., 21(5), 431–440.CrossRefPubMedGoogle Scholar
  44. 44.
    Dominici, M., Le Blanc, K., Meller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R. J., Keating, A., Prockop, D. J., & Horwitz, E. M. (2006). Minimal criteria for defining mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy., 8(4), 315–317.CrossRefPubMedGoogle Scholar
  45. 45.
    Barry, F. P., & Murphy, J. M. (2004). Review mesenchymal stem cells: clinical applications and biological characterization. The International Journal of Biochemistry & Cell Biology, 36(4), 568–584.CrossRefGoogle Scholar
  46. 46.
    Fernandez Vallone, V. B., Romaniuk, M. A., Choi, H., Labovsky, V., Otaeugi, J., & Chasseing, N. A. (2013). Review mesenchymal stem cells and their use in therapy: what has been achieved? Differentiation., 85(1-2), 1–10.CrossRefPubMedGoogle Scholar
  47. 47.
    Vater, C., Kasten, P., & Stiehler, M. (2011). Review. Culture media for the differentiation of mesenchymal stromal cells. Acta Biomaterialia, 7(2), 463–477.CrossRefPubMedGoogle Scholar
  48. 48.
    Johnstone, B., Hering, T. M., Caplan, A., Goldberg, V. M., & Yoo, J. U. (1998). In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Experimental Cell Research, 238(1), 265–272.CrossRefPubMedGoogle Scholar
  49. 49.
    Ragetly, G. R., Griffon, D. J., Lee, H. B., Fredericks, L. P., Gordon-Evans, W., & Chung, Y. S. (2010). Effect of chitosan scaffold microstructure on mesenchymal stem cell chondrogenesis. Acta Biomaterialia, 6(4), 1430–1436.CrossRefPubMedGoogle Scholar
  50. 50.
    Junquera, L. C., Carneiro, J., & Kelley, R. O. Zaklady (1997). histologie (Basic Histology), translation by R. Jelinek, published in Czech Republic by H&H, 124–131.Google Scholar
  51. 51.
    Merlin Rajesh Lal, L. P., Suraishkumar, G. K., & Nair, P. D. (2017). Chitosan-agarose scaffolds supports chondrogenesis of human Wharton’s jelly mesenchymal stem cells. Journal of Biomedical Materials Research, Part A, 105A, 1845–1855 L. P.CrossRefGoogle Scholar
  52. 52.
    Zhang, J., Wu, Y., Thote, T., Lee, E. H., Ge, Z., & Yang, Z. (2014). The influence of scaffold microstructure on chondrogenic differentiation of mesenchymal stem cells. Biomedical Materials, 9(3), 035011.CrossRefPubMedGoogle Scholar
  53. 53.
    Bean, A. C., & Tuan, R. S. (2015). Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Biomedical Materials, 10(1), 015018. Scholar
  54. 54.
    Farrell, M. J., Corneau, E. S., & Mauck, R. L. (2012). Mesenchymal stem cells produce functional cartilage matrix in three-dimensional culture in regions of optimal nutrient supply. European Cells & Materials, 23, 425–440.CrossRefGoogle Scholar
  55. 55.
    Miljkovic, N. D., Cooper, G. M., & Marra, K. G. (2008). Chondrogenesis, bone morphogenetic protein−4 and mesenchymal stem cells. Osteoarthritis and Cartilage, 16(10), 1121–1130.CrossRefPubMedGoogle Scholar
  56. 56.
    Bhattacharjee, M., Coburn, J., Centola, M., Murab, S., Barbero, A., Kaplan, D. L., Martin, I., & Ghosh, S. (2015). Tissue engineering strategies to study cartilage development, degeneration and regeneration. Advanced Drug Delivery Reviews, 84, 107–122.CrossRefPubMedGoogle Scholar
  57. 57.
    Chen, J., Chen, H., Li, P., Diao, H., Zhu, S., Dong, L., Wang, R., Guo, T., Zhao, J., & Zhang, J. (2011). Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds. Biomaterials., 32(21), 4793–4805.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Functional and Hybrid SystemsInstitute of Materials Research, Slovak Academy of SciencesKosiceSlovakia
  2. 2.Institute of AnatomyUniversity of Veterinary Medicine and Pharmacy in KosiceKosiceSlovakia
  3. 3.Department of Microbiology and ImmunologyUniversity of Veterinary Medicine and Pharmacy in KosiceKosiceSlovakia
  4. 4.Institute of Neurobiology of Biomedical Research CenterSlovak Academy of SciencesKosiceSlovakia

Personalised recommendations