Advertisement

Extracellular Expression of L-Aspartate-α-Decarboxylase from Bacillus tequilensis and Its Application in the Biosynthesis of β-Alanine

  • Zhibin FengEmail author
  • Juan ZhangEmail author
  • Guozhong Chen
  • Yihe Ge
  • Xingxiao Zhang
  • Hongwei Zhu
Article
  • 29 Downloads

Abstract

L-aspartate-α-decarboxylase was extracellularly expressed to enhance its production for β-alanine biosynthesis. L-aspartate-α-decarboxylase and cutinase were coexpressed in Escherichia coli; more than 40% of the L-aspartate-α-decarboxylase was secreted into the medium. Selection of best conditions among tested variables enhanced L-aspartate-α-decarboxylase production by the recombinant strain. The total L-aspartate-α-decarboxylase activity reached 20.3 U/mL. Analysis of the enzymatic properties showed that the optimum temperature and pH for L-aspartate-α-decarboxylase were 60 °C and 7.5, respectively. Enzyme activity was stable at pH 4.0–8.5 and displayed sufficient thermal stability at temperatures < 50 °C. In addition, enzymatic synthesis of β-alanine was performed using extracellularly expressed L-aspartate-α-decarboxylase, and a mole conversion rate of > 99% was reached with a substrate concentration of 1.5 M. Extracellular expression of L-aspartate-α-decarboxylase resulted in increased enzyme production, indicating its possible application in the enzymatic synthesis of β-alanine.

Keywords

L-aspartate-α-decarboxylase β-Alanine Bacillus tequilensis Extracellular expression Biosynthesis 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Könst, P. M., Franssen, M. C. R., Scott, E. L., & Sanders, J. P. M. (2009). A study on the applicability of L-aspartate alpha-decarboxylase in the biobased production of nitrogen containing chemicals. Green Chemistry, 11(10), 1646–1652.CrossRefGoogle Scholar
  2. 2.
    Song, C. W., Lee, J., Ko, Y. S., & Lee, S. Y. (2015). Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metabolic Engineering, 30(3), 121–129.CrossRefGoogle Scholar
  3. 3.
    Ford, J. H. (2002). The alkaline hydrolysis of β-aminopropionitrile. Journal of the American Chemical Society, 67(5), 876–877.CrossRefGoogle Scholar
  4. 4.
    Shen, Y., Zhao, L., Li, Y., Zhang, L., & Shi, G. (2014). Synthesis of β-alanine from L-aspartate using L-aspartate-α-decarboxylase from Corynebacterium glutamicum. Biotechnology Letters, 36(8), 1681–1686.CrossRefGoogle Scholar
  5. 5.
    Williamson, J. M., & Brown, G. M. (1979). Purification and properties of L-aspartate-alpha-decarboxylase, an enzyme that catalyzes the formation of beta-alanine in Escherichia coli. Journal of Biological Chemistry, 254(16), 8074–8082.Google Scholar
  6. 6.
    Gopalan, G., Chopra, S., Ranganathan, A., & Swaminathan, K. (2010). Crystal structure of uncleaved L-aspartate-alpha-decarboxylase from Mycobacterium tuberculosis. Proteins-Structure Function and Genetics, 65(4), 796–802.CrossRefGoogle Scholar
  7. 7.
    Dusch, N., Pühler, A., & Kalinowski, J. (1999). Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Applied and Environmental Microbiology, 65(4), 1530–1539.Google Scholar
  8. 8.
    Pei, W., Zhang, J., Deng, S., Tigu, F., Li, Y., & Li, Q. (2017). Molecular engineering of L-aspartate-α-decarboxylase for improved activity and catalytic stability. Applied Microbiology and Biotechnology, 101(15), 6015–6021.CrossRefGoogle Scholar
  9. 9.
    Mahalik, S., Sharma, A. K., & Mukherjee, K. J. (2014). Genome engineering for improved recombinant protein expression in Escherichia coli. Microbial Cell Factories, 13(1), 177.CrossRefGoogle Scholar
  10. 10.
    Li, H., Lu, X., Chen, K., Yang, J., Zhang, A., Wang, X., & Ouyang, P. (2018). β-Alanine production using whole-cell biocatalysts in recombinant Escherichia coli. Molecular Catalysis, 449, 93–98.CrossRefGoogle Scholar
  11. 11.
    Khushoo, A., Pal, Y., Singh, B. N., & Mukherjee, K. J. (2004). Extracellular expression and single step purification of recombinant escherichia coli L-asparaginase II. Protein Expression & Purification, 38(1), 29–36.CrossRefGoogle Scholar
  12. 12.
    Su, L., Yue, M., & Jing, W. (2015). Extracellular expression of natural cytosolic arginine deiminase from Pseudomonas putida and its application in the production of l -citrulline. Bioresource Technology, 196, 176–183.CrossRefGoogle Scholar
  13. 13.
    Cheng, J., Wu, D., Chen, S., Chen, J., & Wu, J. (2011). High-level extracellular production of α-cyclodextrin glycosyltransferase with recombinant Escherichia coli BL21 (DE3). Journal of Agricultural & Food Chemistry, 59(8), 3797–3802.CrossRefGoogle Scholar
  14. 14.
    Choi, J. H., & Lee, S. Y. (2004). Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology & Biotechnology, 64(5), 625–635.CrossRefGoogle Scholar
  15. 15.
    Mergulhão, F. J., Summers, D. K., & Monteiro, G. A. (2005). Recombinant protein secretion in Escherichia coli. Biotechnology Advances, 23(3), 177–202.CrossRefGoogle Scholar
  16. 16.
    Su, L., Woodard, R. W., Chen, J., & Wu, J. (2013). Extracellular location of Thermobifida fusca cutinase expressed in Escherichia coli BL21(DE3) without mediation of a signal peptide. Applied and Environmental Microbiology, 79(14), 4192–4198.CrossRefGoogle Scholar
  17. 17.
    Feng, Z., Zhang, J., Chen, G., Cha, Y., Liu, J., Ge, Y., Cheng, S., & Yu, B. (2016). Isolation, identification and fermentation optimization of Bacillus tequilensis PanD37 producing L-aspartate α- decarboxylase. Acta Microbiologica Sinica, 56(1), 44–55.Google Scholar
  18. 18.
    Song, C. W., Kim, D. I., Choi, S., Jang, J. W., & Lee, S. Y. (2013). Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnology and Bioengineering, 110(7), 2025–2034.CrossRefGoogle Scholar
  19. 19.
    Bartolomeo, M. P., & Maisano, F. (2006). Validation of a reversed-phase HPLC method for quantitative amino acid analysis. Journal of Biomolecular Techniques Jbt, 17(17), 131–137.Google Scholar
  20. 20.
    Zhu, H. Y., & Li, Q. (2006). Strategies for expression of soluble heterologous proteins in Escherichia coli. Chinese Journal of Process Engineering, 6(1), 150–155.Google Scholar
  21. 21.
    Makino, T., Georgiou, G., & Skretas, G. (2011). Strain engineering for improved expression of recombinant proteins in bacteria. Microbial Cell Factories, 10(1), 32–32.CrossRefGoogle Scholar
  22. 22.
    Terasawa, M., Inui, M., Uchida, Y., Kobayashi, M., Kurusu, Y., & Yukawa, H. (1991). Application of the tryptophanase promoter to high expression of the tryptophan synthase gene in Escherichia coli. Applied Microbiology & Biotechnology, 34(5), 623–627.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Life SciencesLudong UniversityYantaiChina
  2. 2.School of AgricultureLudong UniversityYantaiChina

Personalised recommendations