Advertisement

Anti-diabetic Properties of Calcium Channel Blockers: Inhibition Effects on Aldose Reductase Enzyme Activity

  • Cüneyt Türkeş
  • Yeliz DemirEmail author
  • Şükrü Beydemir
Article
  • 42 Downloads

Abstract

Aldose reductase (AR) belongs to NADPH-dependent oxidoreductases and converts glucose to sorbitol in the polyol pathway. AR inhibition is essential to prevent diabetic complications. Here, AR was purified from sheep kidney using simple methods and determined the interactions between some calcium channel blockers and the enzyme. It was found that calcium channel blockers (cinnarizine, nilvadipine, amlodipine besylate, nifedipine, isradipine, and nitrendipine) exhibit potential inhibitor properties for sheep kidney AR with IC50 values in the range of 5.87–8.77 μM and Ki constants in the range of 2.07 ± 0.72–5.62 ± 1.53 μM. The calcium channel blockers showed different inhibition mechanisms. It was determined that all studied compounds showed competitive inhibition effect except for isradipine and nitrendipine. They showed non-competitive inhibition. Among these drugs, cinnarizine was found to be the most potent AR inhibitor (Ki: 2.07 ± 0.72 μM). They may be useful in the treatment and/or prevention of diabetic complications.

Keywords

Aldose reductase Calcium channel blockers Purification Inhibition 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Demir, Y., Isik, M., Gulcin, I., & Beydemir, S. (2017). Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney. Journal of Biochemical and Molecular Toxicology, 31(9), e21935.CrossRefGoogle Scholar
  2. 2.
    Tang, W. H., Martin, K. A., & Hwa, J. (2012). Aldose reductase, oxidative stress, and diabetic mellitus. Frontiers in Pharmacology, 3, 87.CrossRefGoogle Scholar
  3. 3.
    Kou, L., Du, M., Liu, P., Zhang, B., Zhang, Y., Yang, P., Shang, M., & Wang, X. (2019). Anti-diabetic and anti-nephritic activities of Grifola frondosa mycelium polysaccharides in diet-Streptozotocin-induced diabetic rats via modulation on oxidative stress. Applied Biochemistry and Biotechnology, 187(1), 310–322.CrossRefGoogle Scholar
  4. 4.
    Kou, L., Du, M., Zhang, C., Dai, Z., Li, X., & Zhang, B. (2017). The hypoglycemic, Hypolipidemic, and anti-diabetic nephritic activities of zeaxanthin in diet-Streptozotocin-induced diabetic Sprague Dawley rats. Applied Biochemistry and Biotechnology, 182(3), 944–955.CrossRefGoogle Scholar
  5. 5.
    Shrivastava, A., Chaturvedi, U., Sonkar, R., Khanna, A. K., Saxena, J. K., & Bhatia, G. (2012). Antioxidant effect of Azadirachta indica on high fat diet induced diabetic Charles Foster rats. Applied Biochemistry and Biotechnology, 167(2), 229–236.CrossRefGoogle Scholar
  6. 6.
    Saraswat, M., Mrudula, T., Kumar, P. U., Suneetha, A., Rao, T. S., Srinivasulu, M., et al. (2006). Overexpression of aldose reductase in human cancer tissues. Medical Science Monitor, 12(12), 525–529.Google Scholar
  7. 7.
    Taslimi, P., Kandemir, F. M., Demir, Y., Ileritürk, M., Temel, Y., Caglayan, C., & Gulcin, I. (2019). The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: Pharmacological evaluation of some metabolic enzyme activities. Journal of Biochemical and Molecular Toxicology, e22313.  https://doi.org/10.1002/jbt.22313.
  8. 8.
    Triggle, D. J. (2007). Calcium channel antagonists: Clinical uses--past, present, and future. Biochemical Pharmacology, 74(1), 1–9.CrossRefGoogle Scholar
  9. 9.
    Swarnalatha, G., Prasanthi, G., Sirisha, N., & Chetty, C. M. (2011). 1,4-Dihydropyridines: a multifunctional molecule- a review. International Journal of ChemTech Research, 3, 75–89.Google Scholar
  10. 10.
    Ushijima, K., Liu, Y., Maekawa, T., Ishikawa, E., Motosugi, Y., Ando, H., Tsuruoka, S. I., & Fujimura, A. (2010). Protective effect of amlodipine against osteoporosis in stroke-prone spontaneously hypertensive rats. European Journal of Pharmacology, 635(1-3), 227–230.CrossRefGoogle Scholar
  11. 11.
    Anekonda, T. S., Quinn, J. F., Harris, C., Frahler, K., Wadsworth, T. L., & Woltjer, R. L. (2011). L-type voltage-gated calcium channel blockade with isradipine as a therapeutic strategy for Alzheimer's disease. Neurobiology of Disease, 41(1), 62–70.CrossRefGoogle Scholar
  12. 12.
    Ellory, J. C., Kirk, K., Culliford, S. J., Nash, G. B., & Stuart, J. (1992). Nitrendipine is a potent inhibitor of the Ca2+-activated K+ channel of human erythrocytes. FEBS Letters, 296(2), 219–221.CrossRefGoogle Scholar
  13. 13.
    Mishra, B., Sahoo, J., & Dixit, P. K. (2016). Enhanced bioavailability of cinnarizine nanosuspensions by particle size engineering: Optimization and physicochemical investigations. Materials Science and Engineering: C Materials for Biological Applications, 63, 62–69.CrossRefGoogle Scholar
  14. 14.
    Lawlor, B., Segurado, R., Kennelly, S., Olde Rikkert, M. G. M., Howard, R., Pasquier, F., Börjesson-Hanson, A., Tsolaki, M., Lucca, U., Molloy, D. W., Coen, R., Riepe, M. W., Kálmán, J., Kenny, R. A., Cregg, F., O'Dwyer, S., Walsh, C., Adams, J., Banzi, R., Breuilh, L., Daly, L., Hendrix, S., Aisen, P., Gaynor, S., Sheikhi, A., Taekema, D. G., Verhey, F. R., Nemni, R., Nobili, F., Franceschi, M., Frisoni, G., Zanetti, O., Konsta, A., Anastasios, O., Nenopoulou, S., Tsolaki-Tagaraki, F., Pakaski, M., Dereeper, O., de la Sayette, V., Sénéchal, O., Lavenu, I., Devendeville, A., Calais, G., Crawford, F., Mullan, M., & for the NILVAD Study Group. (2018). Nilvadipine in mild to moderate Alzheimer disease: A randomized controlled trial. PLoS Medicine, 15(9), e1002660.CrossRefGoogle Scholar
  15. 15.
    Duncan, G., Marcantonio, J. M., & Tomlinson, J. (1991). Lens calcium and cataract. In G. Obrecht & L. W. Stark (Eds.), Presbyopia research (pp. 33–40). New York: Plenum Press.CrossRefGoogle Scholar
  16. 16.
    Ettl, A., Daxer, A., Gottinger, W., & Schmid, E. (2004). Inhibition of experimental diabetic cataract by topical administration of RS-verapamil hydrochloride. British Journal of Ophthalmology, 88(1), 44–47.CrossRefGoogle Scholar
  17. 17.
    Yasu, T., Kobayashi, M., Mutoh, A., Yamakawa, K., Momomura, S., & Ueda, S. (2013). Dihydropyridine calcium channel blockers inhibit non-esterified-fatty-acid-induced endothelial and rheological dysfunction. Clinical Science, 125(5), 247–255.CrossRefGoogle Scholar
  18. 18.
    Devamanoharan, P. S., & Varma, S. D. (1995). Inhibition of polyol formation in rat lens by verapamil. Journal of Ocular Pharmacology and Therapeutics, 11(4), 527–531.CrossRefGoogle Scholar
  19. 19.
    Fukao, K., Shimada, K., Hiki, M., Kiyanagi, T., Hirose, K., Kume, A., et al. (2011). Effects of calcium channel blockers on glucose tolerance, inflammatory state, and circulating progenitor cells in non-diabetic patients with essential hypertension: a comparative study between azelnidipine and amlodipine on glucose tolerance and endothelial function--a crossover trial (AGENT). Cardiovascular Diabetology, 10, 79.CrossRefGoogle Scholar
  20. 20.
    Zou, Y., Qin, X., Hao, X., Zhang, W., Yang, S., Yang, Y., Han, Z., Ma, B., & Zhu, C. (2015). Phenolic 4-hydroxy and 3,5-dihydroxy derivatives of 3- phenoxyquinoxalin-2(1H)-one as potent aldose reductase inhibitors with antioxidant activity. Bioorganic & Medicinal Chemistry Letters, 25(18), 3924–3927.CrossRefGoogle Scholar
  21. 21.
    Cerelli, M. J., Curtis, D. L., Dunn, J. P., Nelson, P. H., Peak, T. M., & Waterbury, L. D. (1986). Anti-inflammatory and aldose reductase inhibitory activity of some tricyclic arylacetic acids. Journal of Medicinal Chemistry, 29(11), 2347–2351.CrossRefGoogle Scholar
  22. 22.
    Aslan, H. E., & Beydemir, S. (2017). Phenolic compounds: The inhibition effect on polyol pathway enzymes. Chemico-Biological Interaction, 266, 47–55.CrossRefGoogle Scholar
  23. 23.
    Sengul, B., & Beydemir, S. (2017). The interactions of cephalosporins on polyol pathway enzymes from sheep kidney. Archives of Physiology and Biochemistry, 124, 35–44.CrossRefGoogle Scholar
  24. 24.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analitic Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  25. 25.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.CrossRefGoogle Scholar
  26. 26.
    Demir, Y., & Köksal, Z. (2019). The inhibition effects of some sulfonamides on human serum Paraoxonase-1 (hPON1). Pharmacological Reports.  https://doi.org/10.1016/j.pharep.2019.02.012.
  27. 27.
    Beydemir, S., & Demir, Y. (2017). Antiepileptic drugs: impacts on human serum paraoxonase-1. Journal of Biochemical and Molecular Toxicology, 31(6), e21889.Google Scholar
  28. 28.
    Demir, Y., & Beydemir, S. (2015). Purification, refolding, and characterization of recombinant human paraoxonase-1. Turkish Journal of Chemistry, 39, 764–776.CrossRefGoogle Scholar
  29. 29.
    Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 56(3), 658–666.CrossRefGoogle Scholar
  30. 30.
    Kim, S. B., Hwang, S. H., Suh, H. W., & Lim, S. S. (2017). Phytochemical analysis of Agrimonia pilosa Ledeb, its antioxidant activity and aldose reductase inhibitory potential. International Journal of Molecular Sciences, 18(2), 379.CrossRefGoogle Scholar
  31. 31.
    Kim, S. B., Hwang, S. H., Wang, Z., Yu, J. M., & Lim, S. S. (2017). Rapid identification and isolation of inhibitors of rat Lens aldose reductase and antioxidant in Maackia amurensis. BioMed Research International, 2017, 4941825.  https://doi.org/10.1155/2017/4941825.Google Scholar
  32. 32.
    Caglayan, C., Demir, Y., Kücükler, S., Taslimi, P., Kandemir, F. M., & Gulcin, I. (2018). The effects of hesperidin on sodium Arsenite-induced different organ toxicity in rats on metabolic enzymes as antidiabetic and anticholinergics potentials: A biochemical approach. Journal of Food Biochemistry, 43(2), e12720.CrossRefGoogle Scholar
  33. 33.
    Demir, Y., Taslimi, P., Ozaslan, M. S., Oztaskin, N., Çetinkaya, Y., Gulçin, İ., Beydemir, Ş., & Goksu, S. (2018). Antidiabetic potential: in vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes. Archiv der Pharmazie, 351(12), e1800263.Google Scholar
  34. 34.
    Türkan, F., Huyut, Z., Demir, Y., Ertaş, F., & Beydemir, Ş. (2018). The effects of some cephalosporins on acetylcholinesterase and glutathione S-transferase: an in vivo and in vitro study. Archives of Physiology and Biochemistry, 22, 1–9.CrossRefGoogle Scholar
  35. 35.
    Işık, M., Demir, Y., Kırıcı, M., Demir, R., Şimşek, F., & Beydemir, Ş. (2015). Changes in the anti-oxidant system in adult epilepsy patients receiving anti-epileptic drugs. Archives of Physiology and Biochemistry, 121(3), 97–102.CrossRefGoogle Scholar
  36. 36.
    Patil, K. K., & Gacche, R. N. (2017). Inhibition of glycation and aldose reductase activity using dietary flavonoids: A lens organ culture studies. International Journal of Biological Macromolecules, 98, 730–738.CrossRefGoogle Scholar
  37. 37.
    Taslimi, P., Aslan, H. A., Demir, Y., Oztaskin, N., Maras, A., Gülcin, I., Beydemir, S., & Goksu, S. (2018). Diarylmethanon, bromophenol and diarylmethane compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. International Journal of Biological Macromolecules, 119, 857–863.CrossRefGoogle Scholar
  38. 38.
    Alim, Z., Kilinc, N., Sengul, B., & Beydemir, S. (2017). Inhibition behaviors of some phenolic acids on rat kidney aldose reductase enzyme: an in vitro study. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 277–284.CrossRefGoogle Scholar
  39. 39.
    Kadam, A., Dawanea, B., Pawar, M., Shegokar, H., Patil, K., Meshram, R., & Gacche, R. (2014). Development of novel pyrazolone derivatives as inhibitors of aldose reductase: an eco-friendly one-pot synthesis, experimental screening and in silico analysis. Bioorganic Chemistry, 53, 67–74.CrossRefGoogle Scholar
  40. 40.
    Turkes, C., Soyut, H., & Beydemir, S. (2014). Effect of calcium channel blockers on paraoxonase-1 (PON1) activity and oxidative stress. Pharmacological Reports, 66(1), 74–80.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of PharmacyErzincan Binali Yıldırım UniversityErzincanTurkey
  2. 2.Department of Chemistry, Faculty of ScienceAtatürk UniversityErzurumTurkey
  3. 3.Department of Biochemistry, Faculty of PharmacyAnadolu UniversityEskişehirTurkey

Personalised recommendations