Advertisement

Synthesis, Crystal Structure, Hirshfeld Surface Analysis, DFT, and DNA-Binding Studies of (E)-2-(3-Hydroxy-4-Methoxybenzylidene)Hydrazinecarbothioamide

  • Pervaiz Ali Channar
  • Nasima ArshadEmail author
  • Shahid Iqbal Farooqi
  • Fayaz Ali Larik
  • Aamer SaeedEmail author
  • Tuncer Hökelek
  • Syeda Aaliya Shehzadi
  • Nasir Abbas
  • Ulrich Flörke
Article
  • 46 Downloads

Abstract

(E)-2-(3-Hydroxy-4-methoxybenzylidene)hydrazinecarbothioamide 3 was synthesized by reacting thiosemicarbazide with 2-hydorxy-3-methoxybenzaldehyde in dry ethanol. The structure was elucidated by spectroscopic (FT-IR, 1H NMR, and 13C NMR) and single crystal X-ray diffraction techniques. A detailed analysis of the intermolecular interactions has been performed based on the Hirshfeld surfaces and their associated two-dimensional fingerprint plots. DFT, spectroscopic, and electrochemical DNA-binding analysis confirmed that the compound is reactive to bind with DNA. Viscometric studies suggested that compound 3 has a mixed mode of interaction and intercalated into the DNA base pairs predominantly along with the possibility of electrostatic interactions.

Graphical Abstract

Keywords

Azomethine X-ray analysis Hirshfeld surface analysis DFT analysis DNA-binding studies 

Notes

Acknowledgements

The authors would like to thank all the mentioned departments of national and international universities/institutes for the accomplishment of research explored in this paper.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2019_3008_MOESM1_ESM.txt (392 kb)
ESM 1 (TXT 391 kb)
12010_2019_3008_MOESM2_ESM.docx (31 kb)
ESM 2 (DOCX 31 kb)

References

  1. 1.
    Qin, W., Long, S., Panunzio, M., & Biondi, S. (2013). Schiff bases: a short survey on an evergreen chemistry tool. Molecules, 18(10), 12264–12289.CrossRefGoogle Scholar
  2. 2.
    Yoon, T. P., & Jacobsen, E. N. (2003). Privileged chiral catalysts. Science, 299(5613), 1691–1693.CrossRefGoogle Scholar
  3. 3.
    Whiteoak, C. J., Salassa, G., & Kleij, A. W. (2012). Recent advances with π-conjugated salen systems. Chemical Society Reviews, 41(2), 622–631.CrossRefGoogle Scholar
  4. 4.
    Szumna, A. (2010). Inherently chiral concave molecules—from synthesis to applications. Chemical Society Reviews, 39(11), 4274–4285.CrossRefGoogle Scholar
  5. 5.
    Frischmann, P. D., & MacLachlan, M. J. (2013). Metallocavitands: an emerging class of functional multimetallic host molecules. Chemical Society Reviews, 42(3), 871–890.CrossRefGoogle Scholar
  6. 6.
    Gupta, L. K., & Sutar, A. K. (2008). Catalytic activities of Schiff base transition metal complexes. Coordination Chemistry Reviews, 252(12–14), 1420–1450.CrossRefGoogle Scholar
  7. 7.
    Zhang, J., Xu, L., & Wong, W. Y. (2018). Energy materials based on metal Schiff base complexes. Coordination Chemistry Reviews, 355, 180–198.CrossRefGoogle Scholar
  8. 8.
    Khuhawar, M. Y., Mughal, M. A., & Channar, A. H. (2004). Synthesis and characterization of some new Schiff base polymers. European Polymer Journal, 40(4), 805–809.CrossRefGoogle Scholar
  9. 9.
    Sánchez, C. O., Bèrnede, J. C., Cattin, L., Makha, M., & Gatica, N. (2014). Schiff base polymer based on triphenylamine moieties in the main chain. Characterization and studies in solar cells. Thin Solid Films, 562, 495–500.CrossRefGoogle Scholar
  10. 10.
    Foo, K. L., Ha, S. T., Lin, C. M., Lin, H. C., Lee, S. L., Yeap, G. Y., & Sastry, S. S. (2015). Synthesis, characterization and mesomorphic properties of new symmetrical dimer liquid crystals derived from benzothiazole. Karbala International Journal of Modern Science, 1(3), 152–158.CrossRefGoogle Scholar
  11. 11.
    Ha, S. T., Koh, T. M., Lee, S. L., Yeap, G. Y., Lin, H. C., & Ong, S. T. (2010). Synthesis of new Schiff base ester liquid crystals with a benzothiazole core. Liquid Crystals, 37(5), 547–554.CrossRefGoogle Scholar
  12. 12.
    Jia, Y., & Li, J. (2014). Molecular assembly of Schiff base interactions: construction and application. Chemical Reviews, 115(3), 1597–1621.CrossRefGoogle Scholar
  13. 13.
    Kajal, A., Bala, S., Kamboj, S., Sharma, N., & Saini, V. (2013). Schiff bases: a versatile pharmacophore. Journal of Catalysts, 2013, 1–14.CrossRefGoogle Scholar
  14. 14.
    Hameed, A., al-Rashida, M., Uroos, M., Abid Ali, S., & Khan, K. M. (2017). Schiff bases in medicinal chemistry: a patent review (2010-2015). Expert Opinion on Therapeutic Patents, 27(1), 63–79.CrossRefGoogle Scholar
  15. 15.
    Desai, S. Β., Desai, P. B., & Desai, K. R. (2001). Synthesis of some Schiff bases, thiazolidinones and azetidinones derived from 2, 6-diaminobenzo [1, 2-d: 4, 5-d'] bisthiazole and their anticancer activities. Heterocyclic Communications, 7(1), 83–90.CrossRefGoogle Scholar
  16. 16.
    Przybylski, P., Huczynski, A., Pyta, K., Brzezinski, B., & Bartl, F. (2009). Biological properties of Schiff bases and azo derivatives of phenols. Current Organic Chemistry, 13(2), 124–148.CrossRefGoogle Scholar
  17. 17.
    Aziz, A. A. A., Salem, A. N. M., Sayed, M. A., & Aboaly, M. M. (2012). Synthesis, structural characterization, thermal studies, catalytic efficiency and antimicrobial activity of some M (II) complexes with ONO tridentate Schiff base N-salicylidene-o-aminophenol (saphH2). Journal of Molecular Structure, 1010, 130–138.CrossRefGoogle Scholar
  18. 18.
    Sokmen, B. B., Gumrukcuoglu, N., Ugras, S., Sahin, H., Sagkal, Y., & Ugras, H. I. (2015). Synthesis, antibacterial, antiurease, and antioxidant activities of some new 1,2,4-triazole Schiff base and amine derivatives. Applied Biochemistry and Biotechnology, 175(2), 705–714.CrossRefGoogle Scholar
  19. 19.
    Vukovic, N., Sukdolak, S., Solujic, S., & Niciforovic, N. (2010). Substituted imino and amino derivatives of 4-hydroxycoumarins as a novel antioxidant, antibacterial and antifungal agents: synthesis and in vitro assessments. Food Chemistry, 120(4), 1011–1018.CrossRefGoogle Scholar
  20. 20.
    Hassan, A. M., Nassar, A. M., Hussien, Y. Z., & Elkmash, A. N. (2012). Synthesis, characterization and biological evaluation of Fe(III), Co(II), Ni(II), Cu(II), and Zn(II) complexes with tetradentate Schiff base ligand derived from protocatechualdehyde with 2-aminophenol. Applied Biochemistry and Biotechnology, 167(3), 581–594.CrossRefGoogle Scholar
  21. 21.
    Joseph, J., & Nagashri, K. (2012). Novel copper-based therapeutic agent for anti-inflammatory: synthesis, characterization, and biochemical activities of copper(II) complexes of hydroxyflavone Schiff bases. Applied Biochemistry and Biotechnology, 167(5), 1446–1458.CrossRefGoogle Scholar
  22. 22.
    Arshad, N., Perveen, F., Saeed, A., Channar, P. A., Farooqi, S. I., Larik, F. A., & Mirza, B. (2017). Spectroscopic, molecular docking and structural activity studies of (E)-N′-(substituted benzylidene/methylene) isonicotinohydrazide derivatives for DNA binding and their biological screening. Journal of Molecular Structure, 1139, 371–380.CrossRefGoogle Scholar
  23. 23.
    Arshad, N., Channar, P. A., Saeed, A., Farooqi, S. I., Javeed, A., Larik, F. A., & Flörke, U. (2018). Structure elucidation, DNA binding, DFT, molecular docking and cytotoxic activity studies on novel single crystal (E)-1-(2-fluorobenzylidene) thiosemicarbazide. Journal of Saudi Chemical Society.Google Scholar
  24. 24.
    Version, S.A. (2005). Version 2.1-4, SAINT+ version 7.23a and SADABS version 2004/1. Madison, Wisconsin, USA: Bruker Analytical Xray Systems, Inc..Google Scholar
  25. 25.
    Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A: Foundations of Crystallography, 64(1), 112–122.Google Scholar
  26. 26.
    Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., et al. (2009). Gaussian 09 revision a.1. Wallingford CT: Gaussian, Inc..Google Scholar
  27. 27.
    Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.Google Scholar
  28. 28.
    Bernstein, J., Davis, R. E., Shimoni, L., & Chang, N. L. (1995). Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angewandte Chemie International Edition in English, 34(15), 1555–1573.CrossRefGoogle Scholar
  29. 29.
    Hirshfeld, F. L. (1977). Bonded-atom fragments for describing molecular charge densities. Theoreticachimica Acta, 44(2), 129–138.Google Scholar
  30. 30.
    Spackman, M. A., & Jayatilaka, D. (2009). Hirshfeld surface analysis. CrystEngComm, 11(1), 19–32.CrossRefGoogle Scholar
  31. 31.
    Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H., & Sundius, T. (2016). Crystal structure, Hirshfeld surfaces and DFT computation of NLO active (2E)-2-(ethoxycarbonyl)-3-[(1-methoxy-1-oxo-3-phenylpropan-2-yl) amino] prop-2-enoic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 153, 625–636.CrossRefGoogle Scholar
  32. 32.
    Hathwar, V. R., Sist, M., Jørgensen, M. R., Mamakhel, A. H., Wang, X., Hoffmann, C. M., & Iversen, B. B. (2015). Quantitative analysis of intermolecular interactions in orthorhombic rubrene. IUCrJ, 2(5), 563–574.CrossRefGoogle Scholar
  33. 33.
    McKinnon, J. J., Jayatilaka, D., & Spackman, M. A. (2007). Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chemical Communications, (37), 3814–3816.Google Scholar
  34. 34.
    Abraham, C. S., Prasana, J. C., & Muthu, S. (2017). Quantum mechanical, spectroscopic and docking studies of 2-amino-3-bromo-5-nitropyridine by density functional method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 181, 153–163.CrossRefGoogle Scholar
  35. 35.
    Abraham, C. S., Prasana, J. C., Muthu, S., & Raja, M. (2018). Quantum computational studies, spectroscopic (FT-IR, FT-Raman and UV–vis) profiling, natural hybrid orbital and molecular docking analysis on 2, 4 dibromoaniline. Journal of Molecular Structure, 1160, 393–405.CrossRefGoogle Scholar
  36. 36.
    Zhan, C. G., Nichols, J. A., & Dixon, D. A. (2003). Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. The Journal of Physical Chemistry A, 107(20), 4184–4195.CrossRefGoogle Scholar
  37. 37.
    Shah, N. A., Khan, M. R., Ahmad, B., Noureen, F., Rashid, U., & Khan, R. A. (2013). Investigation of flavonoid composition and anti-free radical potential of Sidacordata. BMC Complementary and Alternative Medicine, 13(1), 276.CrossRefGoogle Scholar
  38. 38.
    Arshad, N., Ahmad, M., Ashraf, M. Z., & Nadeem, H. (2014). Spectroscopic, electrochemical DNA binding and in vivo anti-inflammatory studies on newly synthesized Schiff bases of 4-aminophenazone. Journal of Photochemistry and Photobiology B: Biology, 138, 331–346.CrossRefGoogle Scholar
  39. 39.
    Arshad, N., Bhatti, M. H., Farooqi, S. I., Saleem, S., & Mirza, B. (2016). Synthesis, photochemical and electrochemical studies on triphenyltin (IV) derivative of (Z)-4-(4-cyanophenylamino)-4-oxobut-2-enoic acid for its binding with DNA: biological interpretation. Arabian Journal of Chemistry, 9(3), 451–462.CrossRefGoogle Scholar
  40. 40.
    Farooqi, S. I., Arshad, N., Channar, P. A., Perveen, F., Saeed, A., Larik, F. A., & Javeed, A. (2018). Synthesis, theoretical, spectroscopic and electrochemical DNA binding investigations of 1, 3, 4-thiadiazole derivatives of ibuprofen and ciprofloxacin: cancer cell line studies. Journal of Photochemistry and Photobiology B: Biology, 189, 104–118.CrossRefGoogle Scholar
  41. 41.
    Arshad, N., & Farooqi, S. I. (2018). Cyclic voltammetric DNA binding investigations on some anticancer potential metal complexes: a review. Applied Biochemistry and Biotechnology, 186(4), 1090–1110.CrossRefGoogle Scholar
  42. 42.
    Janjua, N. K., Shaheen, A., Yaqub, A., Perveen, F., Sabahat, S., Mumtaz, M., et al. (2011). Flavonoid–DNA binding studies and thermodynamic parameters. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(5), 1600–1604.CrossRefGoogle Scholar
  43. 43.
    Zhang, G., Guo, J., Pan, J., Chen, X., & Wang, J. (2009). Spectroscopic studies on the interaction of morin–Eu (III) complex with calf thymus DNA. Journal of Molecular Structure, 923(1–3), 114–119.CrossRefGoogle Scholar
  44. 44.
    Shahabadi, N., Hadidi, S., & Taherpour, A. (2014). Synthesis, characterization, and DNA binding studies of a new Pt(II) complex containing the drug levetiracetam: combining experimental and computational methods. Applied Biochemistry and Biotechnology, 172(5), 2436–2454.CrossRefGoogle Scholar
  45. 45.
    Chu, L. F., Shi, Y., Xu, D. F., Yu, H., Lin, J. R., & He, Q. Z. (2015). Synthesis and biological studies of some lanthanide complexes of Schiff base. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45(11), 1617–1626.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of Chemistry, Faculty of SciencesAllama Iqbal Open UniversityIslamabadPakistan
  3. 3.Department of Physics, Faculty of EngineeringHacettepe UniversityBeytepeTurkey
  4. 4.Sulaiman Bin Abdullah Aba Al-Khail-Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS)International Islamic University, IslamabadIslamabadPakistan
  5. 5.Department Chemie, Fakultätfür NaturwissenschaftenUniversität PaderbornPaderbornGermany

Personalised recommendations