Response of Propionate-Degrading Methanogenic Microbial Communities to Inhibitory Conditions

  • Hui-Zhong Wang
  • Ying-Chun Yan
  • Min Gou
  • Yue Yi
  • Zi-Yuan Xia
  • Masaru K Nobu
  • Takashi Narihiro
  • Yue-Qin TangEmail author


Propionate is a crucial intermediate during methane fermentation. Investigating the effects of different kinds of inhibitors on the propionate-degrading microbial community is necessary to develop countermeasures for improving process stability. In the present study, under inhibitory conditions (acetate, propionate, sulfide, and ammonium addition), the dynamic changes of the propionate-degrading microbial community from a mesophilic chemostat fed with propionate as the sole carbon source were investigated using high-throughput sequencing of 16S rRNA. Sulfide and/or ammonia inhibited specific species in the microbial community. Compared with Syntrophobacter, Smithella was more resistant to inhibition by sulfide and/or ammonia. However, Syntrophobacter demonstrated greater tolerance than Smithella under acid inhibition conditions. Some genera that had close phylogenetic relationships and similar functions showed similar responses to different inhibitors.


Methane fermentation Propionate degradation Ammonia inhibition Sulfide inhibition Microbial community 


Funding Information

This work was supported by the Ministry of Science and Technology of China (2016YFE0127700) and the National Natural Science Foundation of China (51678378). This study was partly supported by the Japan Society for the Promotion of Science with Grant-in-Aid for Scientific Research No. 17H05239, 18H01576 and 18H03367.

Compliance with Ethical Standards

Human and Animal Rights and Informed Consent

This paper does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2019_3005_MOESM1_ESM.doc (1.6 mb)
ESM 1 (DOC 1614 kb)


  1. 1.
    Lettinga, G. (1995). Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek, 67(1), 3–28.CrossRefGoogle Scholar
  2. 2.
    Dupla, M., Conte, T., Bouvier, J. C., Bernet, N., & Steyer, J. P. (2004). Dynamic evaluation of a fixed bed anaerobic digestion process in response to organic overloads and toxicant shock loads. Water Science and Technology, 49(1), 61–68.CrossRefGoogle Scholar
  3. 3.
    Hansen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic digestion of swine manure: inhibition by ammonia. Water Research, 32(1), 5–12.CrossRefGoogle Scholar
  4. 4.
    Lens, P. N. L., Visser, A., Janssen, A. J. H., Pol, L. W. H., & Lettinga, G. (1998). Biotechnological treatment of sulfate-rich wastewaters. Critical Reviews in Environmental Science and Technology, 28(1), 41–88.CrossRefGoogle Scholar
  5. 5.
    Bouallagui, H., Touhami, Y., Ben Cheikh, R., & Hamdi, M. (2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry, 40(3-4), 989–995.CrossRefGoogle Scholar
  6. 6.
    Sung, S., & Liu, T. (2003). Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere, 53(1), 43–52.CrossRefGoogle Scholar
  7. 7.
    Parkin, G., Speece, R., Yang, C., & Kocher, W. (1983). Response of methane fermentation systems to industrial toxicants. Journal - Water Pollution Control Federation , 55(1), 44–53.Google Scholar
  8. 8.
    Hill, D. T., Cobb, S. A., & Bolte, J. P. (1987). Using volatile fatty acid relationships to predict anaerobic digester failure. Transactions of ASAE, 30(2), 496–0501.CrossRefGoogle Scholar
  9. 9.
    Ahring, B. K., Sandberg, M., & Angelidaki, I. (1995). Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Applied Microbiology and Biotechnology, 43(3), 559–565.CrossRefGoogle Scholar
  10. 10.
    Barredo, M. S., & Evison, L. M. (1991). Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values. Applied and Environmental Microbiology, 57(6), 1764–1769.Google Scholar
  11. 11.
    Briones, A., & Raskin, L. (2003). Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Current Opinion in Biotechnology, 14(3), 270–276.CrossRefGoogle Scholar
  12. 12.
    Lü, F., Hao, L., Guan, D., Qi, Y., Shao, L., & He, P. (2013). Synergetic stress of acids and ammonium on the shift in the methanogenic pathways during thermophilic anaerobic digestion of organics. Water Research, 47(7), 2297–2306.CrossRefGoogle Scholar
  13. 13.
    Karakashev, D., Batstone, D. J., & Angelidaki, I. (2005). Influence of environmental conditions on methanogenic compositions in anaerobic biogas reactors. Applied and Environmental Microbiology, 71(1), 331–338.CrossRefGoogle Scholar
  14. 14.
    Koster, I. W., & Lettinga, G. (1984). The influence of ammonium-nitrogen on the specific activity of pelletized methanogenic sludge. Agricutural Wastes, 9(3), 205–216.CrossRefGoogle Scholar
  15. 15.
    Schink, B. (1997). Energetics of syntrophic cooperation in methanogenic degradation. Microbiology and Molecular Biology Reviews, 61(2), 262–280.Google Scholar
  16. 16.
    Kida, K., Morimura, S., & Sonoda, Y. (1993). Accumulation of propionic acid during anaerobic treatment of distillery wastewater from barley-Shochu making. Journal of Fermentation and Bioengineering, 75(3), 213–216.CrossRefGoogle Scholar
  17. 17.
    Li, Y., Zhang, Y., Kong, X., Li, L., Yuan, Z., Dong, R., & Sun, Y. (2017). Effects of ammonia on propionate degradation and microbial community in digesters using propionate as a sole carbon source. Journal of Chemical Technology and Biotechnology, 92(10), 2538–2545.CrossRefGoogle Scholar
  18. 18.
    Del Giorgio, P. A., & Gasol, J. M. (2008). Physiological structure and single-cell activity in marine bacterioplankton. Microbial Ecology of the Oceans, 2, 243–285.CrossRefGoogle Scholar
  19. 19.
    Bremer, H., & Dennis, P. P. (1996). In Neidhardt et al. (Eds.), In Escherichia coli and Salmonella typhimurium: cellular and molecular biology, chapter. 97: Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate (pp. 1553–1569).Google Scholar
  20. 20.
    Shigematsu, T., Tang, Y., Kawaguchi, H., Ninomiya, K., Kijima, J., Kobayashi, T., Morimura, S., & Kida, K. (2003). Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. Journal of Bioscience and Bioengineering, 96(6), 547–558.CrossRefGoogle Scholar
  21. 21.
    Griffiths, R. I., Whiteley, A. S., O'Donnell, A. G., & Bailey, M. J. (2000). Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA-and rRNA-based microbial community composition. Applied and Environmental Microbiology, 66(12), 5488–5491.CrossRefGoogle Scholar
  22. 22.
    Dan, X., Chen, H., Chen, F., He, Y., Zhao, C., Zhu, D., Zeng, L., & Li, W. (2016). Analysis of the rumen bacteria and methanogenic archaea of yak (Bos grunniens) steers grazing on the Qinghai-Tibetan Plateau. Livestock Science, 188, 61–71.CrossRefGoogle Scholar
  23. 23.
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., & Knight, R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16), 2194–2200.CrossRefGoogle Scholar
  24. 24.
    Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73(16), 5261–5267.CrossRefGoogle Scholar
  25. 25.
    Jiang, X., Hayashi, J., Sun, Z. Y., Yang, L., Tang, Y. Q., Oshibe, H., Osaka, N., & Kida, K. (2013). Improving biogas production from protein-rich distillery wastewater by decreasing ammonia inhibition. Process Biochemistry, 48(11), 1778–1784.CrossRefGoogle Scholar
  26. 26.
    Barberán, A., Bates, S. T., Casamayor, E. O., & Fierer, N. (2011). Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6, 343.CrossRefGoogle Scholar
  27. 27.
    Campanaro, S., Treu, L., Kougias, P. G., Luo, G., & Angelidaki, I. (2018). Metagenomic binning reveals the functional roles of core abundant microorganisms in twelve full-scale biogas plants. Water Research, 140, 123–134.CrossRefGoogle Scholar
  28. 28.
    Alsouleman, K., Linke, B., Klang, J., Klocke, M., Krakat, N., & Theuerl, S. (2016). Reorganisation of a mesophilic biogas microbiome as response to a stepwise increase of ammonium nitrogen induced by poultry manure supply. Bioresource Technology, 208, 200–204.CrossRefGoogle Scholar
  29. 29.
    Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10), 4044–4064.CrossRefGoogle Scholar
  30. 30.
    Parkin, G. F., Lynch, N. A., Kuo, W.-C., Van Keuren, E. L., & Bhattacharya, S. K. (1990). Interaction between sulfate reducers and methanogens fed acetate and propionate. Research Journal of the Water Pollution Control Federation, 62, 780–788.Google Scholar
  31. 31.
    Poirier, S., Desmond-Le Quéméner, E., Madigou, C., Bouchez, T., & Chapleur, O. (2016). Anaerobic digestion of biowaste under extreme ammonia concentration: Identification of key microbial phylotypes. Bioresource Technology, 207, 92–101.CrossRefGoogle Scholar
  32. 32.
    Procházka, J., Dolejš, P., Máca, J., & Dohányos, M. (2012). Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Applied Microbiology and Biotechnology, 93(1), 439–447.CrossRefGoogle Scholar
  33. 33.
    de Bok, F. A. M., Stams, A. J. M., Dijkema, C., & Boone, D. R. (2001). Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and Methanospirillum hungatei. Applied and Environmental Microbiology, 67(4), 1800–1804.CrossRefGoogle Scholar
  34. 34.
    Houwen, F. P., Plokker, J., Stams, A. J. M., & Zehnder, A. J. B. (1990). Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii. Archives of Microbiology, 155(1), 52–55.CrossRefGoogle Scholar
  35. 35.
    Plugge, C. M., Dijkema, C., & Stams, A. J. M. (1993). Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiology Letters, 110(1), 71–76.CrossRefGoogle Scholar
  36. 36.
    Nobu, M. K., Narihiro, T., Rinke, C., Kamagata, Y., Tringe, S. G., Woyke, T., & Liu, W. (2015). Microbial dark matter ecogenomics reveals complex synergistic network in a methanogenic bioreactor. The ISME Journal, 9(8), 1710–1722.CrossRefGoogle Scholar
  37. 37.
    Beckmann, S., Lueders, T., Krüger, M., von Netzer, F., Engelen, B., & Cypionka, H. (2011). Acetogens and acetoclastic Methanosarcinales govern methane formation in abandoned coal mines. Applied and Environmental Microbiology, 77(11), 3749–3756.CrossRefGoogle Scholar
  38. 38.
    Kimura, Z.-i., & Okabe, S. (2013). Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen. The ISME Journal, 7(8), 1472–1482.CrossRefGoogle Scholar
  39. 39.
    Calli, B., Mertoglu, B., Inanc, B., & Yenigun, O. (2005). Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Process Biochemistry, 40(3–4), 1285–1292.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Architecture and EnvironmentSichuan UniversityChengduChina
  2. 2.Institute of New Energy and Low-Carbon TechnologySichuan UniversityChengduChina
  3. 3.Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations