Advertisement

Applied Biochemistry and Biotechnology

, Volume 189, Issue 2, pp 661–679 | Cite as

Activity-Structure Study on the Peptide Fraction of AG2: a Potent In Vitro Transfection Agent

  • Lucia D. Grippo
  • Juan M. Rudi
  • María M. De Zan
  • Antonella Giorello
  • Sebastián Antuña
  • Claudio C. Prieto
  • Carolina M. I. Veaute
  • Diana M. MüllerEmail author
Article

Abstract

Gemini-based amphiphiles are candidates for biomedical applications. In fact, most of the gemini compounds described in the literature have been prepared to be used as new synthetic vectors in gene transfection. Our group carried out an activity-structure study starting from the structure of the gemini [AG2-C18/]2, which is an effective in vitro transfection reagent. We synthesized a series of novel amphiphilic amino acid derivatives of low molecular weight, named AGn-Cm (N), in which the same apolar region (m) of oleic or palmitic acid was maintained and the peptide region was modified by amino acid insertions, deletions, and substitutions. We also determined the transfection efficiency, critical micelle concentration, particle size, and ζ-potential for these derivatives. Amphiphiles AG10-C16 and AG10-C18 were more active at a lower N/P ratio than AG2-C18. These amphiphiles showed no activity when lysine was replaced by ornithine, and the activity of all derivatives increased when there were more ornithine residues and a W/O = 1 ratio in the peptide region. It can be said that for AG10-C16, these two structural requirements on the amino acid portion predominated over the type of aliphatic chain used.

Keywords

Amphiphile N-Acylated Cysteine Gemini Ornithine Transfection 

Notes

Funding Information

This work was supported by grants from CAI+D 2016, Seed Capital, and the University Policies System (SPU) of the Universidad Nacional del Litoral (U.N.L).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Dauty, E., Remy, J. S., Blessing, T., & Behr, J. P. (2001). Dimerizable cationic detergents with a low cmc condense the plasmid DNA into nanometric particles and transfect cells in culture. Journal of American Chemical Society, 123(38), 9227–9234.CrossRefGoogle Scholar
  2. 2.
    Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 72(72), 1525–1568.CrossRefGoogle Scholar
  3. 3.
    Degiorgio, V., & Conti, M. (1985). Physics of amphiphiles, micelles, vesicles, and microemulsions (pp. 665–684). North-Holland Publishing Company.Google Scholar
  4. 4.
    Shrestha, R. G., Nomura, K., Yamamoto, M., Yamawaki, Y., Tamura, Y., Sakai, K., Sakamoto, K., Sakai, H., & Abe, M. (2012). Peptide-based gemini amphiphiles: phase behavior and rheology of wormlike micelles. Langmuir, 28(44), 15472–15481.CrossRefPubMedGoogle Scholar
  5. 5.
    Nogueira, D. R., Tavano, L., Mitjans, M., Pérez, L., Infante, M. R., & Vinardell, M. P. (2013). In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles. Biomaterials, 34(11), 2758–2772.CrossRefPubMedGoogle Scholar
  6. 6.
    Peña, L. C., Argarañá, M. F., De Zan, M. M., Giorello, A., Antuña, S., Prieto, C. C., Veaute, C., & Müller, D. M. (2017). New amphiphilic amino acid derivatives for efficient DNA transfection in vitro. Advances in Chemical Engineering and Science, 7(02), 191–205.CrossRefGoogle Scholar
  7. 7.
    Baichao, M., Zhang, S., Jiang, H., Zhao, B., & Lv, H. (2007). Lipoplex morphologies and their influences on transfection efficiency in gene delivery. Journal of Controlled Release, 123(3), 184–194.CrossRefGoogle Scholar
  8. 8.
    Pérez, L., Pinazo, A., Pons, R., & Infante, M. R. (2014). Gemini surfactants from natural aminoacids. Advances in Colloid and Interface Science, 205, 134–155.CrossRefPubMedGoogle Scholar
  9. 9.
    Damen, M., Aarbiou, J., van Dongen, S. F., Buijs-Offerman, R. M., Spijkers, P. P., van den Heuvel, M., Kvashnina, K., Nolte, R. J., Scholte, B. J., & Feiters, M. C. (2010). Delivery of DNA and siRNAby novel gemini-like amphiphilic peptides. Official Journal of the Controlled Release Society, 145(1), 33–39.CrossRefGoogle Scholar
  10. 10.
    Kelleher, T.J., Lai, J.J., DeCourcey, J.P., Lynch, P., Zenoni, M. & Tagliani, A. (2000). High purity lipopeptides, lipopeptide micelles and processes for preparing same. US6696412B1.Google Scholar
  11. 11.
    Kuhner, C., & Romesser, J. (2001). Compositions and methods of use of peptides in combination with biocides and/or germicides. WO2003091276A3.Google Scholar
  12. 12.
    Adami, R.C., Houston, M. E. & Johns, R.E. (2009). Lipopeptides for delivery of nucleic acids. WO 2009046220 A3.Google Scholar
  13. 13.
    Laverty, G., Gorman, S. P., & Gilmore, B. F. (2012). Antimicrobial peptide incorporated poly (2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidisassociated biomaterial infections. Journal of Biomedical Materials Research Part A, 100(7), 1803–1814.CrossRefPubMedGoogle Scholar
  14. 14.
    Kamysz, E., Sikorska, E., Dawgul, M., Tyszkowski, R., & Kamysz, W. (2015). Influence of dimerization of lipopeptide Laur-Orn-Orn-Cys–NH2 and an N-terminal peptide of human lactoferricin on biological activity. International Journal of Peptide Research and Therapeutics, 21(1), 39–46.CrossRefPubMedGoogle Scholar
  15. 15.
    Kuliopulos, A. (2012). Polypeptide and lipophilic moiety conjugate compositions, formulations, and uses related thereof. CA2923595A1.Google Scholar
  16. 16.
    Shubh, S., Der Ploeg, L., & Herderson, B. (2013). Pharmaceutical compositions. WO2014144842A2.Google Scholar
  17. 17.
    Mograbi, J., Atlas, D. & Keynan, S. (2017). Antioxidant, anti-inflammatory, anti-radiation, metal chelating compounds and uses thereof. EP 3121189 A1.Google Scholar
  18. 18.
    Thery, T., O’Callaghan, Y., O’Brien, N., & Arendt, E. K. (2018). Optimisation of the antifungal potency of the amidated peptide H-Orn-Orn-Trp-Trp-NH2 against food contaminants. International Journal of Food Microbiology, 265, 40–48.CrossRefPubMedGoogle Scholar
  19. 19.
    Kruse, T., Sensfuss, U., & Clausen, T.R. (2017). Novel peptides and peptide derivatives and uses thereof. WO2017005765.Google Scholar
  20. 20.
    Chang, W. C. (2004). Fmoc solid phase peptide synthesis: a practical approach. Oxford: Oxford University Press.Google Scholar
  21. 21.
    Campeau, E., Ruhl, V. E., Rodier, F., Smith, C. L., Rahmberg, B. L., Fuss, J. O., Campisi, J., Yaswen, P., Cooper, P. K., & Kaufman, P. D. (2009). A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One, 4(8), e6529.  https://doi.org/10.1371/journal.pone.0006529.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wang, C., Li, X., Wettig, S. D., Badea, I., Foldvarid, M., & Verral, R. E. (2007). Investigation of complexes formed by interaction of cationic Gemini surfactants with deoxyribonucleic acid. Physical Chemistry Chemical Physics, 9(13), 1616–1628.CrossRefPubMedGoogle Scholar
  23. 23.
    Candiani, G., Frigerio, M., Viani, F., Verpelli, C., Sala, C., & Chiamenti, L. (2007). Dimerizable redox-sensitive triazine-based cationic lipids for in vitro gene delivery. ChemMedChem, 2(3), 292–296.CrossRefPubMedGoogle Scholar
  24. 24.
    Kumar, V., Chatterjee, A., Kumar, N., Ganguly, A., Chakraborty, I., & Banerjee, M. (2014). D-glucose derived novel gemini surfactants: synthesis and study of their surface properties, interaction with DNA, and cytotoxicity. Carbohydrate Research, 397, 37–45.CrossRefPubMedGoogle Scholar
  25. 25.
    Mahato, R. I., Anwer, K., Tagliaferri, F., Meaney, C., Leonard, P., Wadhwa, M. S., Logan, M., French, M., & Rolland, A. (2008). Biodistribution and gene expression of lipid/plasmid complexes after systemic administration. Human Gene Therapy, 9(14), 2083–2099.CrossRefGoogle Scholar
  26. 26.
    Lobo, B. A., Rogers, S. A., Wiethoff, C. M., Choosakoonkriang, S., Bogdanowich-Knipp, S., & Middaugh, C. R. (2001). Characterization of cationic vector-based gene delivery vehicles using isothermal titration and differential scanning calorimetry. Methods in Molecular Medicine, 65, 319–348.PubMedGoogle Scholar
  27. 27.
    Marsh, D., & King, M. D. (1986). Prediction of the critical micelle concentrations of mono and diacyl phospholipids. Chemistry and Physics of Lipids, 42(4), 271–277.CrossRefPubMedGoogle Scholar
  28. 28.
    Fielden, M., Perrin, C., Kremer, A., Bergsma, M., Stuart, M. C., Camilleri, P., & Engberts, J. (2001). Sugar-based tertiary amino gemini surfactants with a vesicle-tomicelle transition in the endosomal pH range mediate efficient transfection in vitro. European Journal of Biochemistry, 268(5), 1269–1279.CrossRefPubMedGoogle Scholar
  29. 29.
    Castro, M., Griffiths, D., Patel, A., Pattrick, N., Kitson, C., & Ladlow, M. (2004). Effect of chain length on transfection properties of spermine-based gemini surfactants. Organic & Biomolecular Chemistry, 2(19), 2814–2820.CrossRefGoogle Scholar
  30. 30.
    Wettig, S. D., Verrall, R. E., & Foldvari, M. (2008). Gemini surfactants: a new family of building blocks for non-viral gene delivery systems. Current Gene Therapy, 8(1), 9–23.CrossRefPubMedGoogle Scholar
  31. 31.
    Yao, C., Tai, Z., Wang, X., Liu, J., Zhu, Q., Wu, X., Zhang, L., Zhang, W., Tian, J., Gao, Y., & Gao, S. (2015). Reduction-responsive cross-linked stearyl peptide for effective delivery of plasmid DNA. International Journal of Nanomedicine, 10, 3403–3416.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Koloskova, O. O., Nikonova, A. A., Budanova, U. A., Shilovskiy, I. P., Kofiadi, I. A., Ivanov, A. V., Smirnova, O. A., Zverev, V. V., Sebaykin, Y. L., Andreev, S. M., & Khaitov, M. R. (2016). Synthesis and valuation of novel Lipopeptide as a vehicle for efficient gene delivery and gene silencing. European Journal of Pharmaceutics and Biopharmaceutics, 102, 159–167.CrossRefPubMedGoogle Scholar
  33. 33.
    Almutary, A. and Sanderson, B.J. S. (2016). “The MTT and crystal violet assays: potential confounders in nanoparticle toxicity testing”. International Journal of Toxicology, 19. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lucia D. Grippo
    • 1
  • Juan M. Rudi
    • 1
  • María M. De Zan
    • 2
  • Antonella Giorello
    • 3
  • Sebastián Antuña
    • 4
  • Claudio C. Prieto
    • 4
  • Carolina M. I. Veaute
    • 5
  • Diana M. Müller
    • 1
    Email author
  1. 1.LAQUIMAP, Departamento Química Orgánica, Facultad de Bioquímica y Ciencias BiológicasUniversidad Nacional del LitoralSanta FeArgentina
  2. 2.Laboratorio de Control de MedicamentosUniversidad Nacional del LitoralSanta FeArgentina
  3. 3.Instituto de Investigaciones en Catálisis y PetroquímicaUniversidad Nacional del LitoralSanta FeArgentina
  4. 4.Laboratorio de Cultivos CelularesUniversidad Nacional del LitoralSanta FeArgentina
  5. 5.Laboratorio de Inmunología BásicaUniversidad Nacional del LitoralSanta FeArgentina

Personalised recommendations